Audible会員プラン登録で、20万以上の対象タイトルが聴き放題。
-
Big Data: Principles and Best Practices of Scalable Realtime Data Systems
- ナレーター: Mark Thomas, Chris Penick
- 再生時間: 9 時間 15 分
カートのアイテムが多すぎます
カートに追加できませんでした。
ウィッシュリストに追加できませんでした。
ほしい物リストの削除に失敗しました。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
聴き放題対象外タイトルです。Audible会員登録で、非会員価格の30%OFFで購入できます。
あらすじ・解説
Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases.
Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive.
This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful.
What's inside:
- Introduction to big data systems
- Real-time processing of web-scale data
- Tools like Hadoop, Cassandra, and Storm
- Extensions to traditional database skills
About the authors: Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.