Audible会員プラン登録で、20万以上の対象タイトルが聴き放題。

プレビューの再生

聴き放題対象外タイトルです。Audible会員登録で、非会員価格の30%OFFで購入できます。

無料体験で、20万以上の対象作品が聴き放題に
アプリならオフライン再生可能
プロの声優や俳優の朗読も楽しめる
Audibleでしか聴けない本やポッドキャストも多数
無料体験終了後は月額¥1,500。いつでも退会できます。

Graph-Powered Machine Learning

著者: Alessandro Negro
ナレーター: Julie Brierley
¥2,170で会員登録し購入

無料体験終了後は月額¥1,500。いつでも退会できます。

¥3,100 で購入

¥3,100 で購入

下4桁がのクレジットカードで支払う
ボタンを押すと、Audibleの利用規約およびAmazonのプライバシー規約同意したものとみなされます。支払方法および返品等についてはこちら

あらすじ・解説

Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data.

In Graph-Powered Machine Learning, you will learn:

  • The lifecycle of a machine learning project
  • Graphs in big data platforms
  • Data source modeling using graphs
  • Graph-based natural language processing, recommendations, and fraud detection techniques
  • Graph algorithms
  • Working with Neo4J

Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices.

Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients!

About the Technology

Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications.

About the Audiobook

Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative audiobook, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks.

About the Author

Alessandro Negro is the chief scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2021 Manning Publications (P)2022 Manning Publications

Graph-Powered Machine Learningに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。