Audible会員プラン登録で、20万以上の対象タイトルが聴き放題。

プレビューの再生
  • Insider Threats Meet Access Control: Insider Threats Detected Using Intent-Based Access Control (IBAC)

  • 著者: Abdulaziz M Almehmadi PhD
  • ナレーター: Jonathan Frazier
  • 再生時間: 4 時間 56 分

聴き放題対象外タイトルです。Audible会員登録で、非会員価格の30%OFFで購入できます。

無料体験で、20万以上の対象作品が聴き放題に
アプリならオフライン再生可能
プロの声優や俳優の朗読も楽しめる
Audibleでしか聴けない本やポッドキャストも多数
無料体験終了後は月額¥1,500。いつでも退会できます。

Insider Threats Meet Access Control: Insider Threats Detected Using Intent-Based Access Control (IBAC)

著者: Abdulaziz M Almehmadi PhD
ナレーター: Jonathan Frazier
¥1,330で会員登録し購入

無料体験終了後は月額¥1,500。いつでも退会できます。

¥1,900 で購入

¥1,900 で購入

下4桁がのクレジットカードで支払う
ボタンを押すと、Audibleの利用規約およびAmazonのプライバシー規約同意したものとみなされます。支払方法および返品等についてはこちら

あらすじ・解説

Existing access control mechanisms are based on the concepts of identity enrollment and recognition and assume that recognized identity is synonymous with ethical actions. However, statistics over the years show that the most severe security breaches have been the results of trusted, authorized, and identified users who turned into malicious insiders. Therefore, demand exists for designing prevention mechanisms. A non-identity-based authentication measure that is based on the intent of the access request might serve that demand.

In this book, we test the possibility of detecting intention of access using involuntary electroencephalogram (EEG) reactions to visual stimuli. This method takes advantage of the robustness of the Concealed Information Test to detect intentions. Next, we test the possibility of detecting motivation of access, as motivation level corresponds directly to the likelihood of intent execution level. Subsequently, we propose and design Intent-based Access Control (IBAC), a non-identity-based access control system that assesses the risk associated with the detected intentions and motivation levels.

We then study the potential of IBAC in denying access to authorized individuals who have malicious plans to commit maleficent acts. Based on the access risk and the accepted threshold established by the asset owners, the system decides whether to grant or deny access requests.We assessed the intent detection component of the IBAC system using experiments on 30 participants and achieved accuracy of 100 percent using Nearest Neighbor and SVM classifiers. Further, we assessed the motivation detection component of the IBAC system. Results show different levels of motivation between hesitation-based vs. motivation-based intentions. Finally, the potential of IBAC in preventing insider threats by calculating the risk of access using intentions and motivation levels as per the experiments shows access risk that is different between unmotivated and motivated groups.

©2016, 2018 Abdulaziz Almehmadi (P)2019 Abdulaziz Almehmadi

Insider Threats Meet Access Control: Insider Threats Detected Using Intent-Based Access Control (IBAC)に寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。