『The Equation That Couldn't Be Solved』のカバーアート

The Equation That Couldn't Be Solved

How Mathematical Genius Discovered the Language of Symmetry

プレビューの再生

Audible会員プラン 無料体験

30日間の無料体験を試す
会員は、20万以上の対象作品が聴き放題
アプリならオフライン再生可能
プロの声優や俳優の朗読も楽しめる
Audibleでしか聴けない本やポッドキャストも多数
無料体験終了後は月会費1,500円。いつでも退会できます

The Equation That Couldn't Be Solved

著者: Mario Livio
ナレーター: Tom Parks
30日間の無料体験を試す

無料体験終了後は月額¥1,500。いつでも退会できます。

¥3,700 で購入

¥3,700 で購入

注文を確定する
下4桁がのクレジットカードで支払う
ボタンを押すと、Audibleの利用規約およびAmazonのプライバシー規約同意したものとみなされます。支払方法および返品等についてはこちら
キャンセル

このコンテンツについて

What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry - known as group theory - did not emerge from the study of symmetry at all, but from an equation that couldn't be solved.

For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory.

The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.

©2005 Mario Livio. (P)2017 Brilliance Publishing, Inc., all rights reserved.
数学 米国
activate_buybox_copy_target_t1

The Equation That Couldn't Be Solvedに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。