エピソード

  • 株式会社ずんだもん技術室AI放送局 podcast 20251030
    2025/10/29
    youtube版(スライド付き) 関連リンク Introducing LangSmith’s No Code Agent Builder 皆さん、こんにちは!今回は、AI開発の最前線から、新人エンジニアの皆さんにもぜひ知ってほしい画期的なニュースをお届けします。AIエージェント開発で有名なLangChainの製品「LangSmith」から、「ノーコードAIエージェントビルダー」が発表されました。これは、プログラミングの知識がなくても、誰でも簡単にAIエージェントを作れるようになるという、すごいツールなんです! これまでのAIエージェント開発は、コードを書く必要があり、主に開発チームが担当していました。しかし、この「LangSmith Agent Builder」を使えば、社内のあらゆる部署の人が、それぞれの仕事に役立つAIエージェントを自分で作れるようになります。例えば、毎日決まった時間にメールで会議の準備状況をまとめてくれたり、送られてきたメールの内容に応じて自動でタスクを作成したりするAIエージェントを、コードなしで設定できるようになるイメージです。 一般的なビジュアルワークフローツールとは違い、LangSmith Agent Builderでは、AI(大規模言語モデル、LLM)が自ら状況を判断し、次に何をするかを決めることができます。これにより、あらかじめ決まった流れだけでなく、もっと柔軟で賢いエージェントを作れるのが大きな特長です。 AIエージェントは、主に以下の4つの要素で構成されます。 プロンプト: エージェントが何をするべきかを指示する「脳」にあたる部分です。ツール: エージェントが外部のサービス(Gmail、Slack、LinkedInなど)と連携するための「手足」のようなものです。トリガー: 「メールを受け取ったら」「特定のスラックチャンネルにメッセージがあったら」といった、エージェントを起動するきっかけです。サブエージェント: 複雑なタスクを、より小さな専門のエージェントに任せることで、管理しやすくする仕組みです。 特に、AIエージェントを作る上で一番難しいと言われる「効果的なプロンプトの作成」について、このビルダーは強力なサポートを提供します。例えば、「こんなことをしたい」と話しかけるだけで、システムが詳細な質問をしながら、適切なプロンプトを自動で生成してくれます。また、エージェントが過去のやり取りやユーザーからの修正を覚えて、次回以降に活かす「記憶機能」も備わっています。 このツールは、LangChainがこれまで培ってきたAIエージェント開発の知見(LangChainやLangGraphといったオープンソースフレームワーク)を活かして作られており、エージェントが複雑な計画を立てたり、複数のステップを踏んで問題を解決したりできる「Deep Agents」という技術が土台になっています。 つまり、この「LangSmith Agent Builder」は、AIエージェント開発のハードルを大きく下げ、より多くの人がAIの力を活用できる未来を切り開くものだと言えるでしょう。現在、プライベートプレビューのウェイティングリストを募集中なので、興味のある方はぜひチェックしてみてください。 引用元: https://blog.langchain.com/langsmith-agent-builder/ StreetReaderAI: Towards making street view accessible via context-aware multimodal AI この研究は、Google Street Viewのような没入型ストリートビュー体験を、視覚に障がいのある方々(ブラインド・ロービジョンコミュニティ)にとって、より利用しやすくするための画期的なプロジェクト「StreetReaderAI」について紹介しています。これは、マルチモーダルAIと画像認識技術を活用し、これまでのストリートビューが対応していなかったスクリーンリーダーによる画像解釈や代替テキストの提供を可能にするものです。 StreetReaderAIは、UIST’25で発表されたコンセプト実証プロトタイプで、リアルタイムの文脈認識AIとアクセスしやすいナビゲーション機能を組み合わせています。チームには視覚に障がいのある研究者も参加し、アクセシビリティを重視して設計されました。主な機能は以下の通りです。 リアルタイムAI記述: 周囲の道路、交差点、場所をAIがリアルタイムで音声説明します。ダイナミックなAIチャット: マルチモーダルAIエージェントと会話しながら、景色や地理について質問...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20251029
    2025/10/28
    youtube版(スライド付き) 関連リンク Develop Specialized AI Agents with New NVIDIA Nemotron Vision, RAG, and Guardrail Models タイトル: Develop Specialized AI Agents with New NVIDIA Nemotron Vision, RAG, and Guardrail Models 要約: NVIDIAは、AIエージェントの開発を加速するための新しいNemotronモデル群を発表しました。AIエージェントとは、自分で考えて計画を立て、状況に応じて行動できる自律的なAIのことです。今回の発表は、特定の業務に特化したAIエージェントを、より効率的かつ安全に構築できるようにすることを目指しています。 発表された主なモデルと、それぞれがAIエージェント開発にどう役立つかを簡単にご紹介します。 Nemotron Nano 3: これは、AIエージェントがもっと賢く、効率的に「思考」するためのモデルです。例えば、複雑な科学的な問題を解いたり、プログラミングをしたり、数学的な計算をしたり、他のツールをAIが使う際の精度を高める役割をします。MoE(Mixture-of-Experts)という特別な技術を使うことで、処理速度を速くしつつ、開発コストも抑えることができます。 Nemotron Nano 2 VL: 文書、画像、動画といったさまざまな種類の情報を理解できる「マルチモーダル」なAIエージェントを作るためのモデルです。これはAIエージェントに「目と耳」の役割を与えるようなもので、データ分析、文書の自動処理、動画の内容理解など、視覚情報とテキスト情報を組み合わせて判断するAIアシスタントの開発に役立ちます。 Nemotron Parse 1.1: 主に文書から必要な情報(テキストや表など)を正確に抽出することに特化した、コンパクトなモデルです。例えば、スキャンした書類から特定のデータを自動で抜き出すような場面で活躍し、その後の情報検索の精度向上や、AIの学習データを質の高いものにするのに役立ちます。 Nemotron RAG: AIエージェントが、最新の情報や企業内の独自のデータソースから知識を引き出して、より正確で信頼性の高い回答を生成するためのRAG(Retrieval-Augmented Generation)パイプラインを構築するのに使うモデル群です。社内マニュアルを参照して質問に答えるAIや、リアルタイムのビジネス分析を行うAIエージェントの基盤となります。 Llama 3.1 Nemotron Safety Guard: AIエージェントが意図せず不適切または有害な内容を出力しないように監視し、安全性を確保するためのモデルです。特に、多言語に対応しており、文化的な違いも考慮しながら、危険なプロンプト(指示)や応答を検出する能力を持っています。 これらのモデルに加え、NVIDIAはAIモデルの性能を評価するための「NeMo Evaluator SDK」や、AIエージェントの最適な設定を自動で見つける「NeMo Agent Toolkit」も提供し、開発者がより信頼性の高いAIエージェントを効率的かつ安全に作れるようサポートしています。 引用元: https://developer.nvidia.com/blog/develop-specialized-ai-agents-with-new-nvidia-nemotron-vision-rag-and-guardrail-models/ ClaudeCodeを使ったら手作りAWSが3日でTerraform化できた話 SREのgumamonさんが、AI Agentの一種である「ClaudeCode」を使って、既存のAWS環境をわずか3日でTerraform化できたという、実践的な事例を紹介する記事です。新人エンジニアの皆さんも、これからのインフラ管理でAIがどう役立つのか、その可能性と注意点を知る良い機会になるでしょう。 まず、Terraform(テラフォーム)とは、AWSのようなクラウドサービスのインフラ構成を「コード」として定義・管理できるようにするツールです。これにより、手作業に比べてミスの削減や繰り返し作業の効率化が期待できます。この記事では、これまで手作業で作られてきたAWS環境をTerraformのコードで管理できるように変更する「Terraform化」にClaudeCodeを活用しました。 AI Agentをインフラ管理に使う際、筆者は「AIは怒れるインターン生」という比喩を使い、その限界と注意点を指摘しています。AIは指示通りに動きますが、長い指示を覚えきれず、時には「やってはいけないこと」を提案することもあります。そのため、AIにインフラの変更を直接許可するのではなく、サンドボックス環境という隔離された場所で作業させ、権限を制限する「ガードレール」の設置が必須であると強調しています。具体的...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20251028
    2025/10/27
    youtube版(スライド付き) 関連リンク 【Claude】Agent Skills入門 - はじめてのスキル作成 - こんにちは、新人エンジニアの皆さん!今回は、生成AIの「Claude」に新しく追加された画期的な機能、「Agent Skills」について、その概要とメリット、簡単な作り方をご紹介します。 最近、GitHub CopilotのようにAIが開発をサポートするツールが増えていますが、ClaudeのAgent Skillsは、AI自身を特定のタスクに特化させ、あなたの仕事をもっと効率的にしてくれる機能です。まるで、Claudeに新しい「専門スキル」を教えるようなイメージですね。 Agent Skillsって何がすごいの? 機能拡張と特化: あなたのプロジェクトに合わせて、Claudeに独自の機能や知識を教え込めます。例えば、「このプロジェクトのコミットメッセージのルールはこれ!」と教えれば、それに沿ったメッセージを自動で作ってくれるようになります。繰り返し作業の削減: 一度スキルを作れば、Claudeが必要に応じて自動で使ってくれるので、同じプロンプト(指示)を何度も入力する手間が省けます。まるで賢いアシスタントがあなたの意図を汲んで動いてくれるようなものです。効率的な処理: たくさんのスキルを教えても、Claudeが賢く情報を管理してくれるのが大きな特徴です。必要なときにだけスキルの中身を読み込む「Progressive disclosure(段階的開示)」という仕組みのおかげで、AIが処理する情報量(コンテキスト)が肥大化せず、常にスムーズに動作します。これは、従来のAIの拡張方法との決定的な違いです。 どうやってスキルを作るの? スキルを作るのは意外とシンプルです。 .claude/skillsフォルダの中に、スキルごとにフォルダを作成します。その中にSKILL.mdというファイルを作成し、スキルを定義します。SKILL.mdには、スキルの「名前」や「簡単な説明」(これはClaudeがスキルを選ぶときに使う大切な情報です!)と、具体的な「指示」や「使用例」を記述します。Anthropics社が提供する「skill-creator」というツールを使えば、これらのファイル作成を自動で行ってくれるので、初めてでも簡単に始められます。 記事では、Semantic Versioning(バージョン管理のルール)に沿ったコミットメッセージを自動生成するスキルを作成する例が紹介されています。一度作成したスキルは、Claude Codeを再起動するだけで自動的に有効になり、「コミットしてください」といった指示に対して、Claudeが状況を判断して適切なコミットメッセージを生成してくれます。 まとめ Agent Skillsは、あなたの開発ワークフローを大きく改善する可能性を秘めた、Claudeの新しい強力な機能です。今後も機能拡張が予定されており、ますます目が離せません。ぜひ皆さんも、このAgent Skillsを活用して、より快適で効率的な開発環境を築いてみてください! 引用元: https://tech.findy.co.jp/entry/2025/10/27/070000 LangGraph と NeMo Agent Toolkit ではじめる ReAct エージェント 近年、大規模言語モデル (LLM) の進化に伴い、LLMが自律的に意思決定し外部ツールを使って複雑なタスクをこなす「AI エージェント」が注目されています。これは、単なるテキスト生成を超え、現実世界の問題解決に役立つ可能性を秘めています。 この記事では、AI エージェントの主要な手法である「ReAct (Reasoning and Acting) エージェント」に焦点を当て、その仕組みと実装、そして開発・運用を効率化するツールキットを紹介しています。 ReAct エージェントの核となるのは、LLMが「リーズニング(推論)」と「アクション(行動)」を繰り返すプロセスです。ユーザーの指示に対し、LLMはまず次に何をすべきかを推論し、必要であれば「Tool Calling(ツール呼び出し)」機能を使って外部ツール(例:Wikipedia検索、現在時刻取得など)を選択します。Tool Callingは、LLMが最適なツールとその使い方を判断する機能で、実際のツール実行は別のプログラムが行います。この推論とツールの実行を繰り返すことで、エージェントは目標を達成し、最終的な回答を導き出します。 ReActエージェントの実装には、LLMのオーケストレーションツールであるLangChainから派生した「LangGraph」が活用されます。LangGraphの最大の特徴は、...
    続きを読む 一部表示
    1分未満
  • マジカルラブリー☆つむぎのピュアピュアA.I.放送局 podcast 20251027
    2025/10/26
    関連リンク Claude Skills でエージェントに専門的なタスクを実行させる Anthropic社から新たに発表された「Claude Skills」は、大規模言語モデル(LLM)であるClaudeに、特定の専門的なタスクを実行させるための強力な新機能です。新人エンジニアの皆さんも、これからのAI開発で活用できる可能性を秘めています。 これまでのClaudeでは、単に指示を理解して文章を生成するだけでなく、スプレッドシート作成のような定型的な作業も可能でしたが、Skills機能を使うと、さらに複雑で具体的なタスクを自動でこなせるようになります。例えば、「ウェブページのスクリーンショットを撮ってPDFにまとめる」といった、複数のステップを伴う処理をClaude自身に実行させることができます。 Skillsの大きな特徴は、Code Execution Tool(コード実行ツール)と連携している点です。これにより、JavaScriptやPythonといったプログラミング言語で書かれたコードをClaudeがサンドボックス環境で実行できるようになります。これは、通常のチャットだけでは実現できない高度な処理をAIエージェントに任せられることを意味します。 スキルを作成する際は、SKILL.mdというMarkdownファイルが中心となります。このファイルには、スキルの名前(name)と詳細な説明(description)を記述します。特に重要なのは、Claudeがいつそのスキルを使うべきかを判断するために、nameとdescriptionがシステムプロンプトに読み込まれることです。この設計は、必要な時だけ詳細な情報を読み込むことで、AIが一度に処理できる情報量(コンテキストウィンドウ)の圧迫を防ぎ、Claudeの性能低下を防ぐ工夫がされています。もしスキルの説明が長くなる場合は、SKILL.mdの本文は簡潔にし、詳細なコード例やヘルパースクリプトは別のファイルに分けて参照することが推奨されています。 作成したスキルは、ZIPファイルに圧縮してClaudeアプリの設定画面から簡単にアップロードできます。アップロード後、チャットで具体的なタスクを指示すると、Claudeがアップロードされたスキルの中から最適なものを選び、コードを実行して作業を進めてくれます。記事の例では、ウェブページのスクリーンショットを撮り、それらをPDFに変換するスキルを作成し、実際にClaudeにそのタスクを指示しています。 この機能は、AIエージェントがより自律的に、かつ高度な作業をこなせるようになるための重要な一歩と言えるでしょう。ただし、コードを実行するという特性上、セキュリティには十分注意し、信頼できるコードのみを使用することが肝要です。Claude Skillsは、AIの可能性を広げ、エンジニアの業務効率化に貢献する新しいツールとして注目されています。 引用元: https://azukiazusa.dev/blog/claude-skills-custom-skills-for-claude/ Spec Kit で SRE AI Agent を開発する長い旅の始まり この記事は、SRE(Site Reliability Engineering)業務を自律型AIで自動化・半自動化する「SRE AI Agent」の開発プロジェクトについて、GitHubが提供する「Spec Kit」と「スペック駆動開発(SDD)」を活用する実践例を紹介しています。著者は「No human labor is no human error(人間が関わらなければ人間のミスは起きない)」をミッションに掲げ、AIによるSRE業務の自動化とSREチームの負担軽減を目指しています。 Spec KitとSDDは、従来のソフトウェア開発の考え方を大きく変えるものです。これまでは「コードが王様」で仕様は補助的な役割でしたが、SDDでは「仕様が王様」となります。詳細な仕様をAIに与えることで、AIが直接コードを生成し、実装まで一貫して支援してくれる新しい開発アプローチです。これにより、仕様と実際のコードの間に生じるギャップを減らし、開発の品質と効率を高めることを目指します。 Spec Kitを使った開発は、以下のようなステップで進みます。まず、プロジェクトの原則をAIと共に確立します。次に、技術的な詳細を避けつつ「何を(What)」作りたいのか、「なぜ(Why)」それが必要なのかという「仕様」をAIに記述させます。この際、大規模言語モデル(LLM)の特性を考慮し、一度に全て決めず、小さな部品ごとに定義し段階的に進めるのがポイントです。 仕様が決まったら、今度は...
    続きを読む 一部表示
    1分未満
  • 私立ずんだもん女学園放送部 podcast 20251024
    2025/10/23
    youtube版(スライド付き) 関連リンク OpenAI acquires Software Applications Incorporated, maker of Sky 皆さん、こんにちは!今回はAI業界で注目すべきニュースがあります。ChatGPTの開発元であるOpenAIが、macOS向けのAIインターフェース「Sky」を開発しているSoftware Applications Incorporatedという企業を買収したと発表しました。新人エンジニアの皆さんにとっては、AIが今後どのように私たちの仕事や日常に深く関わってくるかを知る上で、とても重要な動向なので、ぜひチェックしてください。 SkyってどんなAIなの? Skyは、Macのパソコン上で動作する、賢いAIアシスタントです。一般的なAIチャットボットとは少し異なり、画面に表示されている内容を理解し、さらに様々なアプリ(例えば、ドキュメント作成ソフトやカレンダーアプリなど)をあなたの指示に従って操作できるのが大きな特徴です。例えば、あなたが文書を作成している時に「この段落を要約して」と指示したり、会議の予定を口頭で伝えたりするだけで、Skyがあなたの意図を汲み取り、代わりに作業を進めてくれるイメージです。まるで、いつもあなたの作業をサポートしてくれる優秀な秘書がパソコンの中にいるようなものですね。 OpenAIが買収した理由 OpenAIは、AIの能力を単に質問に答えるだけでなく、もっと実用的に、そしてシームレスに人々の生活や仕事に役立てたいと考えています。今回のSky買収は、このビジョンを大きく加速させるための一歩です。OpenAIは、Skyが持つmacOSへの深い統合技術や、ユーザーにとって使いやすい製品を作り上げるノウハウを、自社の主力製品であるChatGPTに組み込んでいく予定です。 これにより、将来的にはChatGPTが、私たちがパソコンで行うあらゆる作業において、より自然で直感的な形でサポートしてくれるようになるでしょう。例えば、プログラミング中にコードの改善案を提示したり、プレゼンテーション資料の作成を手伝ったりと、AIが私たちの「相棒」のように機能する未来が近づいています。 このニュースが示す未来 これまでのAIは、特定のウェブサイトやアプリ内で利用されることが多かったかもしれません。しかし、今回の買収は、AIがパソコンのOSレベル、つまりシステムの根幹にまで統合され、私たちの作業をより深く、そして広範囲に支援する時代が来ることを明確に示しています。 OpenAIの担当者も「ChatGPTが単にプロンプトに反応するだけでなく、実際に物事を達成する手助けをする未来を築いている」と語っています。Skyの開発者も「AIがデスクトップ上で思考や創造を助ける」というビジョンを掲げており、両社の目指す方向性が一致しています。 この動きは、AIが私たちに代わって複雑なタスクを実行する「AIエージェント」へと進化していくことを示唆しています。私たちエンジニアも、このようなAIの進化に常にアンテナを張り、どのようにAIを活用し、そしてAIと共に新しい価値を創造していくかを考えることが、これからのキャリアにおいて非常に重要になるでしょう。 引用元: https://openai.com/index/openai-acquires-software-applications-incorporated Building the Open Agent Ecosystem Together: Introducing OpenEnv Hugging FaceとMetaは、AIエージェントの開発を加速させるため、新しいオープンなエコシステム「OpenEnv」と、そのためのコミュニティハブを共同で立ち上げました。これは、AIエージェントがより安全かつ効率的に多様なタスクを実行するための重要な取り組みです。 現代のAIエージェントは非常に賢く、多くのタスクを自律的にこなせます。しかし、実際にこれらのタスクを実行させるには、エージェントがプログラムやAPIといった「ツール」にアクセスできる必要があります。問題は、無数のツールを直接AIモデルに与えると、管理が複雑になり、セキュリティ上のリスクも高まる点です。 この課題を解決するために導入されたのが「エージェント環境(Agentic Environments)」という概念です。エージェント環境とは、AIエージェントが特定のタスクをこなすために「本当に必要なものだけ」を定義する、安全で明確なサンドボックス(隔離された実行空間)のことです。これにより、エージェントが...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20251023
    2025/10/22
    youtube版(スライド付き) 関連リンク Introducing ChatGPT Atlas OpenAIは、ChatGPTをウェブブラウザの中心に据えた新しいツール「ChatGPT Atlas」を発表しました。これは、AIを活用してインターネットの利用体験を根本的に見直し、あなたの強力な「スーパーアシスタント」として機能することを目指しています。 Atlasの主な特徴は、ChatGPTがウェブページの内容をリアルタイムで理解し、あなたの作業を直接サポートしてくれる点です。例えば、オンライン上の資料を見ながら疑問が生じた際に、その場でChatGPTに質問でき、コピー&ペーストの手間なく回答を得られます。 さらに、「ブラウザ記憶(Browser memories)」という機能により、あなたが以前閲覧したウェブページの情報をChatGPTが記憶し、それを踏まえた上で質問に答えたり、タスクを処理したりできます。「先週見た求人情報をすべてまとめて、面接対策用の業界トレンドの要約を作成してほしい」といった高度な依頼にも対応可能です。この記憶機能は任意で、ユーザーがいつでも内容を確認・管理・削除できるため、プライバシーは確保されています。 もう一つの重要な機能は「エージェントモード」です。これは、ChatGPTがあなたの指示に基づいてウェブ上で具体的なアクションを実行してくれるものです。例えば、レシピを伝えればオンラインストアで必要な食材を検索し、注文まで代行できます。ビジネスシーンでは、チーム資料の分析や競合調査、その結果の要約なども自動で行えます。このエージェントモードは、現在Plus、Pro、Businessユーザー向けにプレビュー提供中です。 OpenAIはプライバシーとセキュリティにも力を入れています。Atlasでは、ChatGPTがアクセスできる情報や記憶する内容をユーザーが細かく設定できます。シークレットモードや、特定のサイトでChatGPTのページ内容へのアクセスを制限する機能も備わっています。また、あなたの閲覧情報がChatGPTのモデル学習に使われることは、あなたが明示的に許可しない限りありません。エージェント機能についても、コード実行やファイルのダウンロードはできないよう設計されており、金融機関のような機密性の高いサイトでは、アクション実行前にユーザーの確認を求めるなど、安全対策が施されています。ただし、AIエージェントの利用には、誤作動や悪意ある指示によるリスクも存在するため、注意して利用することが推奨されています。 ChatGPT AtlasはmacOS向けに本日より提供が開始され、Windows、iOS、Android版も近日中にリリース予定です。この新しいブラウザは、AIが日々のウェブ利用をより効率的でパーソナルなものに変え、私たちの生産性を向上させる未来への大きな一歩となるでしょう。 引用元: https://openai.com/index/introducing-chatgpt-atlas Create Your Own Bash Computer Use Agent with NVIDIA Nemotron in One Hour この記事では、NVIDIAの高性能な小型AIモデル「Nemotron Nano v2」を使って、自然言語でBashコマンドを操作できるAIエージェントを、わずか1時間、約200行のPythonコードで作成する方法が紹介されています。新人エンジニアの皆さんにとって、AIエージェント開発の第一歩として非常にわかりやすい内容です。 従来のチャットボットが質問応答に特化しているのに対し、AIエージェントは「ツール呼び出し」という機能を使って、高レベルな目標を自律的に判断し、計画し、タスクを実行します。今回のエージェントは、皆さんが普段使っているBashターミナルを「ツール」として利用し、「システム情報をまとめて」といった指示に対して、適切なコマンド(mkdir, df, free, catなど)を自動で実行し、結果を要約してくれます。 このエージェントを開発する上で重要なポイントがいくつかあります。 Bashの操作: エージェントがBashコマンドを実行し、その結果を受け取るための仕組みが必要です。作業ディレクトリの管理も大切です。コマンドの安全性: 誤って危険なコマンドを実行しないよう、「許可されたコマンドリスト」を設定し、実行前にはユーザーの承認を求める「ヒューマン・イン・ザ・ループ」の仕組みを取り入れます。これにより、安全にエージェントを試すことができます...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20251022
    2025/10/21
    youtube版(スライド付き) 関連リンク やさしいClaude Skills入門 Anthropic社のAI「Claude」に、新たに「Claude Skills」という強力な機能が加わりました。これは、Claudeが特定のタスクを高品質かつ効率的に実行するための「ベストプラクティス集」のようなもので、指示やスクリプト、必要なリソースなどを一まとめにしたものです。技術的には「Agent Skills」とも呼ばれ、最近エンジニア界隈で大きな注目を集めています。 Claude Skillsの導入で嬉しいのは、AIにタスクを依頼する際の試行錯誤が減り、まるで経験豊富な先輩が手本を示すように、Claudeが最適な手順で作業を進められるようになる点です。これにより、私たちはAIの能力を最大限に引き出し、より少ない労力で高い成果を期待できるようになります。 その仕組みは、主に「SKILL.md」ファイルに記述されたスキルの概要情報(メタデータ)と、Claudeがファイルを読み込むための「Readツール」で動きます。Claudeは必要なSkillsのファイルだけを動的に読み込むため、AIが一度に扱える情報量(コンテキストウィンドウ)を無駄に消費せず、効率的な処理を実現します。これは、常にプロジェクト全体の指示を保持する「CLAUDE.md」や、ツール接続のプロトコルである「MCP」とは異なり、特定のタスクに特化した「便利機能パック」として、より具体的な作業効率化を目指しています。 Claude Skillsは、Claude Desktop、Claude API、Claude Codeなど様々な環境で利用可能です。Desktop版では設定から簡単に有効化でき、自作のSkillsもアップロードできます。API経由の場合は事前に登録が必要です。また、公式から提供されている「skill creator」というSkillsを使えば、独自のSkillsを効率的に作成できます。 効果的なSkillsを作るための「ベストプラクティス」(良いやり方)も紹介されています。特に、SKILL.mdのメタデータは常に読み込まれるため、簡潔にまとめることが重要です。また、SKILL.md自体の内容は500行以下に抑え、詳細な情報は別ファイルに分割するのが推奨されています。 具体的な活用事例としては、ウェブサービス「キミガタリ」の月間アップデートレポートを自動作成する取り組みが紹介されています。これまでは手動で行っていた定型レポート作成作業が、Claude Skillsを使うことで、現在時刻の確認から、Qiita投稿やGitコミット履歴の取得・分析、既存フォーマットへの沿った記事作成までを自動化。数秒で「まるで自分が書いたような記事」が完成するようになり、大幅な効率化が実現しました。 Claude Skillsは、ベテランエンジニアの知識やノウハウをAIに学習させ、組織における「属人化」(特定の個人にしかできない仕事)を解消する可能性を秘めています。質の高いSkillsが販売されるエコシステムの発展も期待されており、新人エンジニアの皆さんにとって、AIの活用範囲を広げる強力なツールとなるでしょう。 引用元: https://www.docswell.com/s/harinezumi/5M683X-2025-10-21-003933 LangChain raises $125M to build the platform for agent engineering AIエージェント開発をリードするLangChainが、1.25億ドル(約180億円)の資金調達と、企業価値12.5億ドル(約1800億円)への評価を発表しました。この資金は、AIエージェントをより信頼性高く開発するための「エージェントエンジニアリング」プラットフォームの構築に充てられます。 LLM(大規模言語モデル)の登場で様々なアプリケーションが可能になりましたが、データやAPIと連携して自律的に動く「AIエージェント」こそがその真の力を引き出します。しかし、AIエージェントは試作は容易でも、本番環境で安定稼働させるのは非常に難しいという課題があります。「エージェントエンジニアリング」とは、この課題を解決し、非決定論的なLLMシステムを信頼性の高い体験へと磨き上げていく反復的なプロセスです。 LangChainはこの「エージェントエンジニアリング」のための包括的なプラットフォームを提供しています。主な発表内容は以下の通りです。 LangChainとLangGraphの1.0リリース: AIエージェントを迅速に構築できるオープンソースフレームワークが安定版となり、一般的なエージェントパターン向けのアーキテクチャが強化...
    続きを読む 一部表示
    1分未満
  • マジカルラブリー☆つむぎのピュアピュアA.I.放送局 podcast 20251020
    2025/10/19
    関連リンク The Case for the Return of Fine-Tuning AIの世界では、一度は主流から外れていた「ファインチューニング」という技術が、再び大きな注目を集めています。これは、既存の大規模言語モデル(LLM)を、より特定の用途やデータに合わせて微調整する技術のことです。 かつて、Transformerモデルの登場により、ファインチューニングは効率的なモデル開発手法でした。しかし、LLMが非常に巨大化すると、モデル全体を再学習する「フルファインチューニング」は莫大な計算コストと時間が必要となり、実用的ではなくなりました。その代わりに、開発者はモデルへの指示を工夫する「プロンプトエンジニアリング」や、外部情報を参照させる「RAG(Retrieval-Augmented Generation)」を活用するようになりました。これらはモデルを再学習する必要がなく、手軽に良い結果を出せたからです。 ところが、2021年にMicrosoft Researchが発表した「LoRA(Low-Rank Adaptation)」という新しい手法が状況を変えました。LoRAは、モデルのほとんどの部分を固定し、ごく一部の小さな追加部分だけを学習することで、コストを大幅に削減しつつ、フルファインチューニングと同等の性能を引き出すことを可能にしました。Hugging FaceのPEFTライブラリもLoRAの実装を容易にし、ファインチューニングのハードルを大きく下げました。 現在、ファインチューニングが再び重要視されている主な理由は以下の通りです。 技術環境の整備: GPUを利用できるクラウドサービスが増え、LoRAのような効率的な手法が手軽に実行できるようになりました。モデルの進化安定: LLMの進化が「革命的」から「進化的」になり、ファインチューニングしたモデルが無駄になりにくくなりました。オープンソース化: MistralやLlamaのようなオープンなLLMが増え、企業が自社のニーズに合わせてモデルをカスタマイズしやすくなりました。プロンプトの限界: プロンプトやRAGだけでは対応しきれない、企業独自の専門用語や話し方、複雑なルールなど、よりきめ細かなカスタマイズが求められるようになったからです。 Thinking Machines Labsの「Tinker」のような新しいプラットフォームは、ファインチューニングをさらに進化させています。例えば、LoRAの適用範囲を広げたり、学習率やバッチサイズといったパラメータを工夫したりすることで、より高性能なモデルを効率的に作れるよう提唱されています。現代のファインチューニングは、一つの大きなモデルを調整するだけでなく、ベースモデルと複数のLoRAアダプターを組み合わせて、用途に応じて柔軟に切り替える「モジュール式」へと進化しています。 モデルの評価にはまだ課題が残るものの、今後は運用中にフィードバックを受けて自動で学習し続ける「継続的学習」のような仕組みも期待されています。 ファインチューニングは、単なる技術的な調整を超え、企業がAIを自社のビジネスに合わせて深くカスタマイズし、独自の強みを生み出すための「戦略的な手段」として、その価値を高めています。AIをよりパーソナルに、より専門的に活用する未来において、この技術が果たす役割はますます大きくなるでしょう。 引用元: https://welovesota.com/article/the-case-for-the-return-of-fine-tuning LLM回答精度検証でテストデータやテストケースケースをAIに作ってもらう この記事では、LLM(大規模言語モデル)の回答精度を検証するために必要な「テストデータ」や「テストケース」を、AIと協力して効率よく作成する方法が解説されています。新人エンジニアの皆さんも、AIを上手に活用して開発作業を効率化するヒントが得られるでしょう。 まず、LLMを使った情報検索システム(例:Slackのメッセージ検索)の検証に使う「ダミーデータ」作りからスタートです。筆者は、実際のメッセージのJSONデータをAIに見本として渡し、「スレッド内のメッセージとスレッド外のメッセージを半々で100件作ってほしい」「改行や文字数のばらつきも入れてほしい」といった具体的な条件を細かく指定しました。AIはこれらの指示に応え、人間と対話しながら、より本物に近い、多様なメッセージデータを作り上げていきました。 次に、...
    続きを読む 一部表示
    1分未満