関連リンク - Vercel AI SDK で MCP クライアントをツールとして利用する
この記事では、Vercel AI SDKを使って、LLM(大規模言語モデル)に外部ツール連携機能を追加するMCP(Model Context Protocol)クライアントを利用する方法を解説します。MCPはLLMが外部のデータやツールを利用するための共通ルールです。Vercel AI SDKを使うと、MCPクライアントを簡単に組み込めます。Microsoftのplaywright-mcpを例に、Webブラウザ操作ツールをLLMから使えるようにする方法を紹介。SSEを使ってローカルサーバーと通信し、experimental_createMCPClientでクライアントを初期化。mcpClient.tools()でツール定義を取得し、LLMに渡します。使い終わったらmcpClient.close()で接続を閉じることが重要です。Schema Discoveryを使うと、ツール定義を自動で取得できます。
引用元: https://azukiazusa.dev/blog/vercel-ai-sdk-mcp-client
MCP(Model Context Protocol)は、AIが外部データやツールと安全に連携するための共通プロトコルです。従来のAIは知識が限定的で、外部システムとの連携が難しく、開発コストも高かったのですが、MCPはこれらの課題を解決します。 MCPは、AIをUSB-Cポートのように様々な外部サービスと繋ぎ、データの取得や書き込みを可能にします。Anthropic社が仕様とSDKを公開しており、開発者は自社のデータやサービスをMCPサーバー経由で公開できます。 従来のプラグイン型やフレームワーク型、RAG型のアプローチは部分的な解決に留まっていましたが、MCPはオープンなプロトコルであり、大手AI企業のサポートもあり、業界標準となる可能性があります。 MCPにより、AIは自律的に外部情報を取得し、実世界への働きかけが可能になり、生成AIの可能性を大きく広げると期待されています。
引用元: https://zenn.dev/eucyt/articles/mcp-server-impact
- Cline / Roo-Codeにおけるコード理解と新規・保守タスクの現状
Cline/Roo-Codeは、Tree-sitterとLLMを使い、必要なコードだけを逐次解析するツールです。全体をインデックス化しないため、大規模リポジトリでも動きますが、得意なことと苦手なことがあります。
得意なのは、単一ファイルや少数のファイルに対する小規模な修正や機能追加です。一方、全体的な依存関係を把握できないため、大規模なリファクタリングやデッドコードの検出は苦手です。
Clineを効果的に使うには、ドキュメントコメントや依存関係マップを整備し、タスクを細かく分割することが重要です。また、gitログ分析ツールなどと組み合わせることで、より高度なリファクタリングも可能になります。
新規プロジェクトや小規模なコードベースでは、Clineの強みが活かしやすいでしょう。 Clineは、CursorやWindsurfに比べ、手軽に利用でき、プロンプトを細かく制御できる点が魅力です。
引用元: https://zenn.dev/tesla/articles/33d196d17bf3bb
- 保育園のお迎え行ったら「機密情報入ってるので見せられないが、謎の動作をするExcel」の話をされてエスパーデバッグに突入した
バックエンドエンジニアの筆者が、保育園で先生からExcelの不具合について相談を受けた話。シートが勝手に右にスクロールしてしまう現象に対し、画面が見れない状況で原因を特定しようと試みるも、解決には至らず。他のエンジニアからも様々な原因が寄せられたが、キーボードの故障やExcelの設定ミスなどが考えられる。最終的に、原因特定には実機確認が必要と結論。
引用元: https://togetter.com/li/2531930
VOICEVOX:春日部つむぎ