エピソード

  • 私立ずんだもん女学園放送部 podcast 20250711
    2025/07/10
    関連リンク claude codeにNG Word集を設定すればキレなくてすむのでそのやり方 ** この記事は、AIアシスタントであるClaude Codeがユーザーの指示に反して独自の解釈や代替行動を取り、それによって生じるストレスや無駄なトークン消費を解決するための具体的な方法を提案しています。 AIは時に「ブラウザで確認して」という指示に対し、勝手に「エラーが出たのでcurlを使います」といった代替案を出してくることがあります。このような、意図しない挙動を防ぎ、AIがより正確に指示に従うようにするために、「NG Word集」と「NG Command集」を設定する仕組みが紹介されています。 この仕組みは、AIの発言や実行しようとするコマンドをチェックする「フック」という機能を活用します。具体的には、AIが発言を終えた際(Stop時)や、コマンドを実行する前(PreToolUse時)に、設定されたルールに基づいて内容を検証します。 設定は、.claudeディレクトリ配下にフックのスクリプトと、NGワードやNGコマンドのルールを定義するJSONファイルを配置することで実現します。 例えば、AIの会話に「はず」「代わり」「別の」といった推測や代替案を示す言葉が含まれていたら「推測や代替案は禁止されている」とAIにフィードバックし、作業を中断させます。また、curlやnpmのような特定のコマンドを使おうとしたら、その実行をブロックし、「禁止コマンドが検出された」とAIに伝えます。これにより、AIは自分で誤りに気づき、指示に沿った行動を修正するよう促されます。 この設定を導入することで、ユーザーはAIに対して同じことを何度も繰り返して指摘する必要がなくなり、イライラが大幅に減ると筆者は述べています。AIが指示された範囲で正確に動作するようになるため、開発作業の効率化にも繋がります。 もし設定方法が不明な場合は、この記事のURLを直接Claude Codeに渡して「この設定を自分のプロジェクトに追加してほしい」と依頼することもできるため、新人エンジニアの方でも導入しやすいでしょう。AIとのよりスムーズな連携を目指す方におすすめの、実践的な制御方法です。 引用元: https://zenn.dev/sesere/articles/e3d5695e0a7d14 How to Build an Agent AIエージェントの構築は多くの企業が注目していますが、実際に手掛けるチームはまだ少ないのが現状です。この記事では、アイデアから実際に役立つエージェントを構築するための実践的な6つのステップを、メールエージェントを例に分かりやすく解説しています。新人エンジニアの方でも安心して取り組めるよう、基礎から順に見ていきましょう。 ステップ1:エージェントの「仕事」を具体的に定義する まずは、エージェントに何をさせたいのかを明確にします。「賢いインターン生ならできる」くらいの、現実的で具体的なタスクを選びましょう。漠然としすぎたり、すでに既存のソフトウェアで十分なタスク、または実現不可能な魔法のようなタスクは避けてください。エージェントがこなすべき具体的な例を5〜10個書き出すことで、タスクの範囲が適切か確認し、後の性能評価の基準にもなります。 ステップ2:運用手順(SOP)を設計する 次に、人間がそのタスクを行うならどんな手順になるかを、詳細な標準作業手順書(SOP:Standard Operating Procedure)として書き出します。この作業を通じて、タスクの範囲が適切か、エージェントにどんな判断やツールが必要になるかを把握できます。例えばメールエージェントなら、「メール内容を分析して優先度を分類する」「カレンダーを確認して会議をスケジュールする」といった手順です。 ステップ3:プロンプトで最小限の機能を構築する(MVP) エージェントの核となるAIの「推論(判断)」部分を、まずプロンプトとして作成します。特に重要な判断タスク(例:メールの緊急度や意図の分類)に焦点を当て、手動でデータを与えながら、AIが正しく判断できるか検証します。この段階でコアなAIのロジックを確実にすることが、後の開発をスムーズに進める鍵です。 ステップ4:実データと連携し、全体の流れを組み立てる プロンプトがうまく機能するようになったら、それを実際のデータや...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250710
    2025/07/09
    関連リンク AIともっと楽するE2Eテスト この資料は、AIを活用して「エンドツーエンド(E2E)テスト」、つまりユーザーがアプリを操作するのと同じように、画面を通じた一連の動作が正しく行われるかを確認するテストを効率化する方法について解説しています。 近年、AIツールによるコード生成の速度が飛躍的に向上したことで、開発スピードは上がりました。しかし、その結果として、アプリの品質を保証するためのテスト(特にE2Eテスト)が追いつかず、開発全体のボトルネックになってしまうという新たな課題が生まれています。従来のE2Eテストは、専門知識が必要で学習コストが高く、属人化しやすいうえ、仕様変更のたびにメンテナンスが大変という課題がありました。 そこで注目されるのが、AIによるテスト作成です。AIを使うことで、自然言語でテストシナリオを記述できるようになり、専門知識がなくてもテストを作成できるようになります。さらに、AIがテストのメンテナンスをサポートしてくれることで、チーム全体でテストに貢献しやすくなります。 この資料では、AIが最大限にパフォーマンスを発揮できるよう、「AI First」の設計思想に基づいた「ScreenActionパターン」というテストアーキテクチャが提案されています。これは、画面のUI要素の定義(PageObject)、操作の定義(ActionObject)、状態検証の定義(StateObject)をそれぞれ別々のクラスに明確に分離する設計です。これにより、AIがコードを生成する際に、どの部分を担当すべきかが明確になり、迷わず効率的にコードを書けるようになります。結果として、テストコードの保守性やチーム開発のしやすさも向上します。 実際にAIを活用したところ、プロンプト一つでベースとなるテストコードを短時間で生成できるようになり、手作業に比べて大幅な効率化が実現しました。今後は、QAエンジニアだけでなく、プロダクトオーナーやデザイナーも自然言語でテストシナリオを記述し、AIがそれをテストコードに変換することで、チーム全体でテスト作成に取り組めるようになると期待されています。 将来的には、AIによるテストの完全自動生成や、ユーザーの要望(ユーザーストーリー)から直接テストを生成する未来を目指しており、AIがテストの保守まで自動で行うことで、より開発がスムーズになることが期待されます。 引用元: https://speakerdeck.com/myohei/aitomotutole-surue2etesuto From AI to Agents to Agencies: The Next Evolution of Artificial Intelligence この記事では、AIが「エージェント」からさらに進化した「エージェンシー」という新しい形へと変化している様子を解説しています。 従来の「AIエージェント」は、複雑なタスクを人間が細かく指示しなくても自律的にこなせるシステムとして登場しました。例えば、ウェブサイトのコードを書いたり、デジタルの作業の流れを管理したりと、単一のAI(大規模言語モデルなど)が様々なツールを使いこなして、与えられたタスク全体をこなすイメージです。 しかし、筆者はさらに進んだ新しい仕組みとして「エージェンシー」が生まれつつあると指摘します。「エージェンシー」は、単一のタスクを達成するために、複数の異なる種類の知能(AI)を動的に連携させるシステムです。例えるなら、一つの道具を使いこなす「AIエージェント」に対し、「エージェンシー」は、複数の専門家が協力し、それぞれの得意分野を活かして一つの大きな仕事をこなすようなものです。 「エージェンシー」は、次の3つの要素で構成されます。 タスクコンテキスト管理: 作業全体の要件や進捗状況を一貫して把握し、情報がぶれないようにします。知能割り当てシステム: 複数の専門的な知能の中から、目の前のサブタスクに最も適した知能を自動で選びます。オーケストレーションロジック: メインタスクを小さなサブタスクに分解し、それぞれに最適な知能を割り当て、全てがスムーズに連携するよう調整します。 例えば、「ECサイトのデータを取得するPythonウェブスクレイパーを作成する」というタスクを「エージェンシー」に指示した場合、以下のように動作します。 全体の設計や計画...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250709
    2025/07/08
    関連リンク Introducing Deep Research in Azure AI Foundry Agent Service マイクロソフトが、Azure AI Foundry Agent Service向けに「Deep Research(ディープリサーチ)」のパブリックプレビューを発表しました。これは、OpenAIの高度なAIエージェント技術をAzure上で利用できるようにするものです。AIエージェントとは、指示に基づいて自動で情報を探し、分析し、タスクを実行するプログラムのことです。 Deep Researchを使うと、企業は複雑なウェブ調査を自動化できるようになります。例えば、市場分析や競合調査、規制報告書の作成など、これまでは人が時間をかけて行っていた調査業務を、AIが代行できるようになります。 このサービスの主なポイントは以下の通りです。 広範囲なウェブ調査の自動化: Bing検索と連携し、ウェブ上の膨大な情報から必要なものを正確に見つけ出します。調査結果には引用元が明記されるため、情報の信頼性を確認しやすいのが特徴です。プログラムから利用できるAIエージェント: チャット形式だけでなく、APIやSDKを使って、他のアプリケーションやワークフローからDeep Researchの機能を呼び出すことができます。これにより、調査機能を既存のビジネスシステムに組み込んだり、繰り返し実行する自動処理の一部にしたりすることが可能です。複雑な業務フローの自動化: Azure FunctionsやLogic Appsといった他のAzureサービスと組み合わせることで、調査だけでなく、その結果を元にしたレポート作成や通知といった一連の複雑な業務プロセス全体を自動化できます。高い透明性と企業での利用への対応: 調査の過程や判断の根拠、参照した情報源がすべて記録されるため、結果の透明性が高く、企業内のセキュリティやコンプライアンス(法令遵守)の基準を満たしながら利用できます。 Deep Researchの仕組みは、まずAIが与えられた質問を正確に理解し、Bing検索で関連性の高い最新情報を収集します。次に、収集した情報をもとに深く思考し、分析を行い、最終的な回答をまとめます。この際、単なる情報の要約ではなく、新しい洞察やパターンを見つけ出すこともできます。出力されるレポートには、AIがどのように推論し、どの情報源を参照したかが詳しく記載されます。 このサービスは、現在限定パブリックプレビューとして提供されており、利用にはサインアップが必要です。料金は、AIが処理するトークン(テキストの単位)の量に基づいて計算されます。 Deep Researchは、AIエージェントがビジネスの様々な場面で活用される未来に向けた、重要な一歩となるでしょう。 引用元: https://azure.microsoft.com/en-us/blog/introducing-deep-research-in-azure-ai-foundry-agent-service/ 退屈なことは Devin にやらせよう: Booster開発チームでのリアルなAI活用事例 Repro Booster開発チームでは、AIを開発業務だけでなく、ドキュメント作成や顧客対応まで幅広く活用し、業務効率を大幅に向上させています。 中心となるのは、自分で考えて作業を進めるAIエージェント「Devin」です。Devinは、Slackや専用画面から指示されたバグ修正や新機能の実装タスクを受け持ちます。自分でコードを解析し、修正案を「Pull Request(プルリクエスト、コード変更の提案)」として作成するだけでなく、人間のレビューコメントに合わせて修正も自動で行います。特に、Devinが過去の会話や指示から知識を学習・記憶し、その後のアウトプットに活かす「Knowledge機能」によって、その性能は導入当初よりも大きく向上し、より質の高い成果物を出せるようになっています。 個々のエンジニアも、コーディングを支援するAIツールを積極的に利用しています。例えば、「Claude Code」は新しいプロジェクトの土台コードを素早く生成するのに役立ちます。また、Devinが作ったプルリクエストをGoogle Geminiという別のAIにレビューさせるという、AI同士でのコードレビューも試されており、異なるAIの組み合わせによってレビューの質が高まる効果が実感されています。 開発以外の領域でもAIは活躍しています。ChatGPTやDevinは、バグ修正後の関連ドキュメントの更新やリリースノートの作成を自動化します。プロダクトマネージャーは、AIを使って口頭での...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250708
    2025/07/07
    関連リンク Mercury: Ultra-Fast Language Models Based on Diffusion 「Mercury」は、拡散モデルという新しい技術を取り入れた、次世代の大規模言語モデル(LLM)です。これまでのLLMは一つずつ単語やコードを生成していましたが、Mercuryは複数の単語やコードの断片を同時に予測して生成できる点が画期的です。これにより、非常に高速な動作が可能になりました。これは、LLMの基盤技術であるTransformerアーキテクチャを使いながら、同時に複数の要素を予測できるように学習させる新しいアプローチで実現されています。 特に注目されているのは、プログラミングコードの生成に特化した「Mercury Coder」というモデルです。このモデルには「Mini」と「Small」の2つのサイズがあります。独立した評価機関によるテストでは、Mercury Coder Miniが1秒あたり1109トークン、Mercury Coder Smallが1秒あたり737トークンという驚異的な処理速度を記録しました。これは、現在速度に特化した最先端のLLMと比較しても、平均で最大10倍も高速でありながら、生成されるコードの品質は同等レベルを保っていることを示しています。 さらに、実際の開発者が利用する評価プラットフォーム「Copilot Arena」では、Mercury Coderは品質面で全モデル中2位にランクインし、速度においては全モデルの中で最速を記録しました。これは、論文上の数値だけでなく、実際の開発現場でもその優れた性能が認められていることを意味します。 開発元のInception Labsは、この「Mercury Coder」を外部サービスから利用できるパブリックAPIと、無料で試せるプレイグラウンドも公開しています。新人エンジニアの皆さんにとって、日々のコーディング作業を劇的に効率化し、AIを活用した開発のスピードを飛躍的に向上させる可能性を秘めた、まさに画期的な技術の登場と言えるでしょう。この超高速LLMの登場は、AI開発の未来を大きく変える「ブレイクスルー」となるでしょう。 引用元: https://arxiv.org/abs/2506.17298 LLM Inference Benchmarking: Performance Tuning with TensorRT-LLM 大規模言語モデル(LLM)を実際に使う際、その「推論性能」はとても重要です。どれだけ速く、たくさんのユーザーのリクエストを処理できるかが、ユーザー体験やサービスの効率を大きく左右します。この記事では、NVIDIAが提供するオープンソースのAI推論エンジン「TensorRT-LLM」を使って、LLMの性能を最大限に引き出すためのベンチマークとチューニング方法を、新人エンジニアにも分かりやすく解説しています。 まず、LLMの性能を測るためのツール「trtllm-bench」の使い方が紹介されています。このツールを使うことで、実際にLLMを動かすことなく、モデルの性能を簡単に測定・分析できます。ベンチマークを行うには、GPU環境の準備と、テスト用のデータセットを用意します。データセットは、質問とそれに対する期待される回答の長さなどを指定して作成します。 ベンチマークを実行すると、様々な性能指標が得られます。特に注目すべきは、「Request Throughput(1秒あたりのリクエスト処理数)」、「Total Output Throughput(1秒あたりの出力トークン数)」、そしてユーザー体験に直結する「Average time-to-first-token [TTFT](最初のトークンが出るまでの時間)」や「Average time-per-output-token [TPOT](トークンごとの生成時間)」です。これらの指標を分析し、アプリケーションの目的に合わせて最適なバランスを見つけることが、性能チューニングの鍵となります。例えば、ユーザーへの応答速度を重視するなら「Per User Output Speed」という指標を最大化するように調整します。 記事では、データの精度を少し落とす代わりに処理を高速化する「FP8量子化」されたモデルと、標準の「FP16」モデルを比較し、FP8モデルがより多くの同時ユーザーを処理できる例を示しています。このように、trtllm-benchを使えば、さまざまな設定を試して、どの設定が一番効率的かをグラフで視覚的に確認できます。 最適な設定が見つかったら、それを「trtllm-serve」というツールを使って、LLMを動かすサーバーに適用します。trtllm-serveはOpenAI互換のAPIを提供するため、チューニングされたLLMをアプリケーションから簡単に呼び出して利用...
    続きを読む 一部表示
    1分未満
  • マジカルラブリー☆つむぎのピュアピュアA.I.放送局 podcast 20250707
    2025/07/06
    関連リンク Genspark、ノーコードAIエージェント「Super Agent」にGPT-4.1とOpenAI Realtime APIを搭載 AI技術は日々進化しており、私たちエンジニアの仕事のやり方も大きく変わりつつあります。今回ご紹介するのは、AIスタートアップのGensparkが開発した画期的なAIエージェント「Super Agent」です。この「Super Agent」は、OpenAIの最新AIモデル「GPT-4.1」と、リアルタイムなやり取りを可能にする「OpenAI Realtime API」という、OpenAIの最先端技術を搭載して公開されました。 「Super Agent」の最大の特徴は、その名の通り「ノーコード」、つまりプログラミングの知識がなくても誰でも簡単にAIを使いこなせる点です。文章で指示を出すだけで、AIが自律的に動いて、これまで人が手間をかけていた様々なタスクを自動で処理してくれます。例えば、情報収集、データの整理、レポート作成、さらには電話をかけるといった、一連の複雑な業務プロセス全体を、AIが連携して実行してくれるのです。これは、まるであなたの仕事をサポートしてくれる、非常に賢い「AIの代理人」を手に入れるようなものです。 このAIエージェントの賢さの秘密は、裏側で9種類もの大規模言語モデル(LLM)と80種類以上のツールを組み合わせて利用していることにあります。AIは、指示されたタスクの内容に応じて、最適な大規模言語モデルやツールを自動的に選び出し、それらを連携させて処理を進めます。これにより、複雑な問題も効率的に解決できるよう設計されています。特に、中核を担う「GPT-4.1」は、非常に長い指示や膨大な量の情報を一度に理解し、記憶しながら作業を進めることができるため、多岐にわたるリサーチや、構造化された精度の高いアウトプットが期待できます。また、OpenAIの画像生成モデル「GPT-image-1」も利用されており、必要に応じて画像を生成する能力も持っています。 具体的な活用例として紹介されているのが「Call For Me」機能です。これは、ユーザーに代わってAIが自動で電話をかけ、まるで人間が話すように会話を進めてくれるというものです。このように、「Super Agent」は単に情報を生成するだけでなく、現実世界での具体的な行動までAIが行う未来を見せてくれます。 GensparkはOpenAIと密接に連携しており、OpenAIの専門家からベストプラクティス(一番良いやり方)やワークフローの調整、AIモデルの性能を最大限に引き出すためのアドバイスを受けてきたとのことです。この協力関係が、「Super Agent」の素早い開発とリリースに大きく貢献しています。 このようなAIエージェントの進化は、私たちエンジニアが日常業務から解放され、より創造的で戦略的な仕事に集中できるようになる可能性を秘めています。新人エンジニアの皆さんにとっても、AI技術がどのように進化し、どのような新しいサービスを生み出しているのかを知る良い機会になるでしょう。’ 引用元: https://codezine.jp/article/detail/21843 Agentic coding革命が “成った” 世界で…… AI技術の進化により、ソフトウェア開発に大きな変化が訪れています。この記事では、「Agentic coding(エージェンティック・コーディング)」、特に「vibe coding(バイブ・コーディング)」と呼ばれる新しい開発スタイルについて解説しています。vibe codingとは、自然言語でAIの「コーディングエージェント」に指示を出し、それを使ってソフトウェアを開発していく方法のことです。 筆者によると、この変化はすでに「革命」として実現しており、過去1ヶ月間では仕事で作成するコードの約8割がAIエージェントによるものだそうです。この割合は今後さらに増え、1年以内には9割を超えるだろうと予測されています。AIエージェントの活用によって、コードを「生産」するスピードがこれまでの数倍になり、これまで時間やコストの制約で「やらない」と判断されていたようなことも「やる」という選択肢が生まれるようになりました。これは、開発の「量」が「質」に転化するような大きな変化です。 この革命により、ソフトウェアエンジニアに求められるスキルも大きく変わってきています。例えば、AIエージェントは大量のコードを書くのが得意なため、...
    続きを読む 一部表示
    1分未満
  • 私立ずんだもん女学園放送部 podcast 20250704
    2025/07/03
    関連リンク Claude CodeではじめるAgentic Coding入門 この記事では、AIが自律的にプログラミングを行う新しい開発手法「Agentic Coding(エージェンティック・コーディング)」について、その概念から具体的なツールの利用事例、そしてそこから得られた学びまでを、新人エンジニアにも分かりやすく解説しています。 Agentic Codingとは? AIエージェントが、人間から与えられた抽象的な指示(プロンプト)を基に、自分で計画を立て、コードを書き、テストし、結果を評価して修正するという一連の作業を「自律的に」進めるコーディングスタイルです。人間は、AIに対して大まかな方向性を示す「総司令官」のような役割を担います。 Vibe Codingとの違い これまでの「Vibe Coding(バイブ・コーディング)」は、人間が自然言語でAIに具体的な指示を出し、AIが生成したコードを人間が確認・修正するという、人間が「副操縦士」として逐一介入するスタイルでした。Agentic Codingは、この「人間による都度の指示」を最小限にし、AIの自律性を高めたものです。ただし、Agentic Codingの初期段階でAIに作業を慣れさせる「手懐け」のフェーズでは、Vibe Codingのように人間が細かく指示を出す場面もあります。 Claude Codeについて 「Claude Code」は、このAgentic Codingを実現するAIエージェント型のコーディング支援ツールです。ターミナル上で動作するCLIツールであるため、様々な開発環境で利用しやすいのが特徴です。最近では、開発効率を高めるIDE(統合開発環境)との統合も進んでおり、IntelliJのようなツールでも快適に使えるようになりました。使い放題の定額プラン「Claude Max」の登場により、利用者がより積極的にAIを活用できるようになっています。 実務から学んだこと 実際に業務でClaude Codeを使ってみて、効果的にAIを活用するための重要なポイントが見えてきました。 探索空間を絞る: AIに任せる作業範囲を具体的に限定することで、作業の精度が高まります。特に、同じような修正を大量に行う「横展開」の作業では、AIのスピードが大きな助けになります。Plan Modeの活用: AIにまず作業の計画を立てさせ、人間がその計画をチェック・修正することで、意図しない方向に進むのを防ぎ、より良い解決策に繋がります。ドキュメントの整備: コードの仕様やプロジェクトのルールなどを詳しくドキュメント化しておくことで、AIがそれらを学習し、より的確なコーディングができるようになります。MCPサーバーの活用: AIがコードを探索する際に、Language Serverのような高速なツール(MCPサーバー)を利用させることで、効率が向上し、無駄なコストを抑えられます。「手懐け」の重要性: AIが作業に慣れて軌道に乗るまでは、最初の数回は人間がAIの動きを注意深く見守り、適度に指示を与えて調整することが大切です。 AI駆動開発の未来 AIがすべてのプログラミング作業を代替するわけではなく、人間がシステムの設計や要件定義、そしてAIによる「横展開」が難しい複雑な部分を担当し、AIは定型的な作業や大規模な修正を効率的に行う、という役割分担が重要です。これは「Agentic Engineering(エージェンティック・エンジニアリング)」という考え方に通じます。AIの性能は今後も劇的に向上しますが、現時点ではAIに任せられる部分をうまく見極めることが、現実的なAI活用への第一歩となるでしょう。 引用元: https://buildersbox.corp-sansan.com/entry/2025/07/03/142500 Rubyで始めるAIエージェント入門 近年、「AIエージェント」という言葉が急速に注目を集めています。これは、単に利用者の関心が高まっているだけでなく、サービスを提供する側にとっても非常に重要になってきています。主要なベンダーがAIエージェントを実装するための技術的なツール(SDKやAPI)を次々と提供しており、エンジニアとしてAIエージェントの仕組みを理解し、自分で機能を作れるようになることが重要だと筆者は語ります。 AIエージェントにはまだ厳密な定義はありませんが、この記事では「大規模言語モデル(LLM)と外部のツール群を組み合わせ、目標達成まで自律的に複数のタスクを実行する仕組み」と定義しています。これは、AIが...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250703
    2025/07/02
    関連リンク DeNA AI LinkがAIソフトウェアエンジニア『Devin』の日本展開を開始 株式会社ディー・エヌ・エー DeNA DeNAの子会社であるDeNA AI Linkが、革新的なAIソフトウェアエンジニア「Devin(デヴィン)」の日本展開を、開発元のCognition AI社との戦略的パートナーシップによって開始しました。この取り組みは、日本で課題となっているエンジニア不足の解消と、ソフトウェア開発現場の生産性向上を大きく進めることを目指しています。 Devinは、一般的なAIによるコード作成補助ツールとは一線を画し、ソフトウェア開発の全工程を自律的に実行できるのが最大の特徴です。具体的には、「どんなシステムを作るか(要件定義)」から「どう設計するか(設計)」、「実際にコードを書く(コーディング)」、「ちゃんと動くか確認する(テスト)」、そして「実際にサービスとして使えるようにする(デプロイ)」まで、AI自身が考えて一連のタスクをこなします。まるで、新しく優秀なエンジニアがチームに加わり、自律的にプロジェクトを進めてくれるようなイメージです。 Devinを導入することで、開発現場には大きな変化が期待されます。まず、エンジニア一人ひとりの生産性が劇的に向上し、同じ時間でより多くの機能を開発できるようになります。DeNA社内ではすでにDevinが先行導入されており、サービスの新規開発や技術調査、コード品質向上、日々の定型作業の自動化など、様々な場面で業務効率が「倍以上」になった実績が報告されています。例えば、数分の指示で高速にプロトタイプが完成したり、複雑なコードの仕様調査時間が大幅に削減されたりしています。 さらに、プログラミングの専門知識がない非エンジニアでも、Devinに分かりやすく指示を出すだけでコードを生成してもらえるようになります。これにより、アイデアをすぐに形にできる「モノづくり」の機会が広がり、開発の裾野が拡大することが期待されます。 Devinには、開発を強力にサポートする便利な機能が多数搭載されています。「Devin Wiki」は、既存のコードから自動でドキュメントや設計図を生成し、新規プロジェクトメンバーのオンボーディング(業務に慣れるための支援)を迅速にします。「Ask Devin」を使えば、コードについて質問すると対話形式で教えてくれるため、まるでベテランエンジニアに相談するかのようです。「Devin Playbook」は、繰り返しの開発タスク手順をテンプレートとして保存・共有できるため、誰でも同じ品質で作業を進められます。 DeNA AI Linkは、Devinの導入を検討している企業に対し、単にツールを導入するだけでなく、各企業のニーズに合わせた最適な活用方法のコンサルティングや、共同でのシステム開発、さらにはDevinを最大限に活用できるチーム作りまで、手厚くサポートしていくとのことです。 AIが単なるツールではなく、私たちと一緒に働く「パートナー」として開発を加速させる時代が到来しました。新人エンジニアの皆さんも、これからのAI技術の進化と、それによって変わる開発の常識にぜひ注目してみてください。 引用元: https://dena.com/jp/news/5269/ Context Engineering 新人エンジニアの皆さん、今回はAIエージェント開発で非常に重要な「Context Engineering(コンテキストエンジニアリング)」という技術について解説します。 LLM(大規模言語モデル)は、一度に処理できる情報量に限りがあります。これを「コンテキストウィンドウ」と呼び、パソコンの「RAM(メモリ)」のようなものです。AIエージェントは複雑なタスクをこなすために、対話やツールの使用を通じて多くの情報(コンテキスト)を生成し続けます。情報が多すぎると、コンテキストウィンドウの限界を超えたり、コストが増えたり、処理が遅くなったり、LLMの性能が落ちて誤った回答をする問題が生じます。 Context Engineeringは、このコンテキストウィンドウに「エージェントが次のステップで本当に必要とする、最適な情報だけ」を効率的に詰め込むための「技術と工夫」です。これにより、エージェントの性能を最大限に引き出し、安定した動作を実現します。主な戦略は以下の4つです。 Write (書き...
    続きを読む 一部表示
    1分未満
  • 株式会社ずんだもん技術室AI放送局 podcast 20250702
    2025/07/01
    関連リンク Genspark ships no-code personal agents with GPT-4.1 and OpenAI Realtime API AIの世界は進化が速く、新しい技術が次々と登場していますね。今回は、Gensparkという会社が開発した「Super Agent」という画期的なAIエージェントについてご紹介します。これは、新人エンジニアの皆さんも注目すべき、AI活用の最前線を示す事例です。 Super Agentは、プログラムを書かなくても(ノーコードで)使えるAIエージェントです。例えば、電話をかけたり、プレゼンテーション資料を作ったり、レシピを短い動画に変えたりといった、普段の仕事や生活で発生する「現実世界でのタスク」をAIが自動でこなしてくれるのが最大の特徴です。 このAIエージェントのすごいところは、OpenAIの最新のAIモデル(GPT-4.1やGPT-image-1など)と「Realtime API」という技術を組み合わせて使っている点です。これにより、テキスト、画像、音声といった様々な情報を扱えるようになり、ユーザーが「これをしてほしい」と指示するだけで、裏側で複数のAIモデルや80種類以上のツールが連携し、複雑な作業も自動で完結できるようになりました。 GensparkはもともとAI検索エンジンを作っていましたが、ユーザーが単に「答え」を知りたいだけでなく、「成果物」(例えば、提案書や動画)を求めるようになったため、2025年4月に思い切ってAIエージェントに事業の軸を移しました。 このSuper Agentは、ローンチからわずか45日間で年間売上(ARR)が3600万ドル(約56億円)に達するという驚異的な成長を遂げました。しかも、これは20人の小さなチームが、一切有料広告を使わず、口コミと製品自体の魅力だけで達成したものです。 特に面白い機能として、「Call For Me」というものがあります。これはAIがユーザーの代わりに電話をかけ、予約をしたり、配送の変更を依頼したりと、人間相手に自然な会話をリアルタイムで行ってくれます。日本では、この機能を使って会社に退職の連絡をする事例が話題になるほどで、AIが「まさかこんなことまでできるのか!」と多くの人を驚かせました。 Gensparkは、OpenAIとの密接な連携を通じて、モデルの性能を最大限に引き出し、APIの使いやすさも相まって、記録的な速さで製品を開発・拡大できました。Super Agentは単なるチャットAIではなく、様々な作業をこなす「オールインワンのAIワークスペース」を目指しており、今後のAIの進化を示す事例として、新人エンジニアの皆さんにとっても大変参考になるはずです。 引用元: https://openai.com/index/genspark How to Build Custom AI Agents with NVIDIA NeMo Agent Toolkit Open Source Library 昨今、AIエージェントは企業の業務を自動化し、効率を大幅に向上させる存在として注目されています。NVIDIAが提供するオープンソースライブラリ「NVIDIA NeMo Agent toolkit」は、このAIエージェントを効率的に構築・統合するためのツールです。異なるAIフレームワークで作成されたエージェントであっても、このツールキットを使えば、様々なデータ源やツールを簡単に組み合わせて、統一された環境で動かすことができます。 このツールキットを使うと、以下のようなステップでカスタムAIエージェントを構築できます。 プロジェクトの準備: まずはworkflow createコマンドを使って、エージェント開発の土台となるプロジェクトのひな形(スケルトン)を作成します。これにより、エージェントの構成要素やプラグインを定義する設定ファイル(pyproject.tomlやconfig.yaml)が用意されます。開発したエージェントは、Web APIとして広く使われるFastAPIのマイクロサービスとして動かすこともでき、外部から簡単に利用できるようになります。 マルチRAGエージェントの作成: RAG(Retrieval Augmented Generation)とは、外部の知識源から情報を取得し、それを基にAIが回答を生成する技術です。このツールキットでは、複数のRAGを連携させて、様々な情報源から必要な情報を引き出し、複雑な問題に対しても根拠に基づいた推論ができるエージェントを作成できます。例えば、社員の服装規定、給与、休暇ポリシーといった異なる情報を管理するRAGを組み合わせることが可能です。これらのRAGは、ローカル環境でもリモート...
    続きを読む 一部表示
    1分未満