関連リンク - LangGraph 0.3 Release: Prebuilt Agents
LangGraphはAIエージェント構築フレームワークとして、Replit, Klarna, LinkedIn, Uber等で採用されている。LangGraphの基本理念は低レベルな抽象化に留めることだが、より高レベルな抽象化の価値も重視している。今回の0.3リリースでは、langgraphからlanggraph-prebuiltへcreate_react_agentを分離し、PythonとJavaScriptで構築された新しいprebuilt agentsを導入する。これらは、一般的なエージェントパターンを簡単に試せるようにしつつ、LangGraph上に構築されているため、必要に応じて容易にカスタマイズできる。コミュニティによるprebuilt agentsの貢献も奨励している。
引用元: https://blog.langchain.dev/langgraph-0-3-release-prebuilt-agents/
- Claude 3.7 Sonnetの技術紹介|Mizu
Anthropic社の最新LLM「Claude 3.7 Sonnet」が登場。特徴は、AIが「考える時間」を指定できる拡張思考モード、128Kトークン対応、コーディング能力向上、応答の柔軟性向上、開発者向けコマンドラインツールClaude Codeの導入。SWE-bench Verifiedで最高性能、TAU-benchで最高スコアを達成。Webブラウザ、アプリ、APIで利用可能。APIでは思考時間やトークン設定を調整可能。無料プランでも利用可能だが、拡張思考モードは有料プランのみ。
引用元: https://note.com/dr_yh/n/ncbfc1194c1bb
- RoboPianist: Dexterous Piano Playing with Deep Reinforcement Learning
UC Berkeley、Google DeepMind、Stanford University、Simon Fraser Universityが共同で、深層強化学習を用いてロボットの手にピアノを演奏させる研究を発表しました。 この研究では、高次元制御を進歩させるためのシミュレーションベンチマークとデータセットを公開しています。 MuJoCo物理エンジンで構築された環境で、24自由度を持つShadow Dexterous Handsを使用し、MIDI規格の音楽データを基にピアノ演奏を学習。 演奏の評価には、精度、再現率、F1スコアを使用しています。 また、ピアノの運指(どの指でどの音を弾くか)を考慮した報酬関数を導入し、Repertoire-150という運指ラベル付きMIDIデータセットを構築しました。 強化学習アルゴリズムDroQを使用し、エネルギーコスト、将来の目標予測、アクション空間の制約などを加えることで性能が向上。 従来のMPC手法と比較して高いF1スコアを達成しました。 課題として、ロボットの手の形状による制約や、指のストレッチが必要な楽曲への対応が挙げられています。
引用元: https://kzakka.com/robopianist/#demo
- ミドルエンジニアの「基礎体力」を養いたい。リクルートグループのニジボックスが研修プログラムに込めた熱き思い
ニジボックスがミドルエンジニア向け研修プログラムを開発。指示された範囲を超え、技術選定や問題解決に必要な知識・技術を「基礎体力」と定義。研修では、深い知識理解、自力での知識獲得、論理的な判断と説明能力の3要素を重視。シニアエンジニアが議論を重ね、作問ガイドラインに基づき作成。レビューではメンターが考えさせる形式で、本質的な理解を促す。研修はエンジニアとしての市場価値向上も視野に入れている。
引用元: https://hatenanews.com/articles/2025/02/27/103000
VOICEVOX:ずんだもん