• Cell Culture Dish Podcast

  • 著者: Brandy Sargent
  • ポッドキャスト

Cell Culture Dish Podcast

著者: Brandy Sargent
  • サマリー

  • The Cell Culture Dish (CCD) podcast covers areas important to the research, discovery, development, and manufacture of disease and biologic therapeutics. Key industry coverage areas include: drug discovery and development, stem cell research, cell and gene therapy, recombinant antibodies, vaccines, and emerging therapeutic modalities.
    Copyright 2024. All rights reserved.
    続きを読む 一部表示

あらすじ・解説

The Cell Culture Dish (CCD) podcast covers areas important to the research, discovery, development, and manufacture of disease and biologic therapeutics. Key industry coverage areas include: drug discovery and development, stem cell research, cell and gene therapy, recombinant antibodies, vaccines, and emerging therapeutic modalities.
Copyright 2024. All rights reserved.
エピソード
  • Unlocking the Potential of Induced Pluripotent Stem Cells: Innovations, Challenges, and Future Directions
    2025/01/22
    In this podcast, we spoke with Dr. Jorge Escobar Ivirico, Product Manager, Bioprocess Solutions at Eppendorf, about the fascinating world of induced pluripotent stem cells (iPSCs), exploring their groundbreaking potential in regenerative medicine, personalized therapies, and drug development. Our guest explained how iPSCs, created by reprogramming adult somatic cells, can differentiate into virtually any cell type, making them invaluable for research and therapeutic applications. We delved into the importance of consistency, quality control, and reproducibility in iPSC production, alongside the challenges of culturing these cells, such as maintaining pluripotency and scaling production for clinical use. The discussion highlighted exciting advancements, including the development of organoids and universal T cells, as well as the ethical considerations distinguishing iPSCs from embryonic stem cells. Looking to the future, Jorge envisioned iPSCs becoming a cornerstone of standard medical practice, while acknowledging the need to address safety, scalability, and regulatory hurdles to fully realize their potential. What are Induced Pluripotent Stem Cells (iPSCs)? "Induced pluripotent stem cells are a type of stem cell created by reprogramming adult somatic cells, like skin or blood cells, back into an embryonic-like state," explains Jorge. This process involves introducing specific transcription factors, often called Yamanaka factors, to transform these cells into a versatile state. Once reprogrammed, iPSCs can differentiate into almost any cell type, making them invaluable tools for research, drug development, and potentially life-changing therapies. The Growing Importance of iPSCs iPSCs offer a range of advantages, particularly their ability to sidestep ethical concerns tied to embryonic stem cell use. “What makes iPSCs so important today,” Jorge notes, “is their versatility and potential applications. Researchers can create patient-specific cell lines, which are essential for drug screening, disease modeling, and personalized medicine.” This technology is pivotal for regenerative medicine, offering hope for repairing damaged tissues and organs. “From neurodegenerative diseases to heart damage, iPSCs open the door to innovative treatment possibilities,” he adds. Mastering the Production Process Producing iPSCs is a meticulous endeavor. "Consistency is key," emphasizes Jorge. Researchers must ensure that each batch of cells meets strict criteria to avoid unpredictable outcomes, especially when precision is vital in both research and therapeutic applications. Standardized protocols and quality control measures are essential to achieve consistency. These involve monitoring for contamination and verifying the cells' ability to differentiate into various cell types. “Imagine developing a therapy based on a specific batch of cells, only to find that subsequent batches behave differently,” he warns. “Such inconsistencies can jeopardize patient outcomes.” Tackling Challenges in Culturing iPSCs Culturing iPSCs presents its own set of challenges. High cell numbers are often needed for large-scale research or therapeutic applications, but scaling up production without compromising quality is no small feat. Maintaining the cells’ pluripotent state is another hurdle, as they can easily differentiate prematurely under certain culture conditions. "Environmental parameters like temperature, pH, oxygen levels, and nutrient availability must be rigorously controlled," Jorge explains. “Even minor fluctuations can negatively impact cell health and their ability to remain pluripotent.” Innovations Addressing Culturing Hurdles To overcome these challenges, researchers are turning to advanced techniques like 3D culture systems and bioreactors. These provide a more natural growth environment for the cells, enhancing their viability and functionality. “By transitioning from traditional 2D cultures to 3D systems,
    続きを読む 一部表示
    26 分
  • Accelerating Bioprocess through Digital Transformation: A Strategic Path Forward
    2024/12/12
    In an era where industries are increasingly driven by data and automation, the bioprocessing sector is embracing digital transformation to streamline workflows and improve productivity. However, blending the complex and highly regulated world of bioprocess with digitalization poses unique challenges. In this podcast, we talk to Dr. Simon Wieninger, Head of Portfolio and Applications at Eppendorf SE about how the journey toward digital integration requires well-defined goals, user-centered design, cross-industry learning, and, crucially, trust. Setting Clear Goals: Purpose-Driven Digitalization “Digitalization shouldn’t happen for digitalization’s sake,” Dr. Wieninger advises. While the temptation to adopt cutting-edge technology is high, each digital tool or system must serve a specific purpose. For bioprocessing organizations, establishing these objectives upfront is critical to ensure that digital investments yield meaningful results. Whether the aim is to boost productivity in production facilities, refine R&D processes, or improve operational efficiency in support functions like HR, having clearly defined goals anchors digital efforts in purpose. This intentional approach is especially significant for production and R&D sectors within bioprocessing. Here, digitalization can streamline processes such as real-time data monitoring, automated adjustments to culture environments, and improved reporting and compliance tracking. By aligning digital goals with broader business objectives, organizations can make more effective use of resources and ensure that digitalization contributes positively to organizational growth. Bridging Skill Gaps and Building Trust: Making Digital Tools Accessible A successful digital transformation relies on the people who will use these tools day-to-day. However, not everyone in bioprocessing has a background in software or programming. Simon points out that for digital tools to be effective, they must be intuitive and accessible to all team members, from scientists in the lab to technicians on the production floor. "We need to design solutions that everyone can use," he says, noting the importance of user-friendly interfaces that require minimal technical knowledge to operate. Part of building an accessible digital framework is understanding the varying comfort levels with technology within the workforce. Some employees may be tech-savvy, while others are less familiar with digital tools. Recognizing and accommodating these differences is crucial to creating a smooth transition. Moreover, as Simon explains, trust is fundamental—not only trust in digital tools but also in the partnerships with vendors and technology providers who support this transformation. Organizations should leverage the expertise of these partners, building collaborative relationships to create solutions that meet specific needs and ultimately make bioprocess workflows more efficient. Learning from Other Industries: Adopting Best Practices in Automation and Standards The bioprocess industry has much to learn from sectors like automotive, finance, and telecommunications, which have long relied on automation and standardized processes to boost efficiency. In automotive manufacturing, for instance, high levels of automation allow for the production of thousands of vehicles with minimal human intervention. Bioprocessing, by contrast, has historically been more manual and labor-intensive, particularly in R&D and small-batch production. According to Simon, one of the greatest opportunities for bioprocessing is to adopt industry standards that facilitate automation and improve interoperability across devices. One such example is the OPC (Open Platform Communications) standard, widely used in other sectors for seamless communication between devices. Applying such standards to bioprocessing could simplify data integration across lab instruments and production equipment, allowing researchers to capture and analyze critica...
    続きを読む 一部表示
    39 分
  • The Key to Biologics Success: Why Developability Assessments Matter in Antibody Discovery
    2024/11/21
    In this podcast, we spoke with Dr. George Wang, Vice President of Discovery and Preclinical Services at WuXi Biologics about the importance of identifying potential manufacturing, stability, and scalability challenges early to mitigate risks, reduce costs, and streamline drug development timelines. By evaluating factors such as solubility, stability, and manufacturability during initial candidate screening, companies can avoid costly setbacks later in the process. Advanced tools like high-throughput assays, computational modeling, and AI-based predictions are now essential for these evaluations. What Is Developability? Dr. Wang began by defining developability as the assessment of whether a drug candidate possesses the necessary attributes to be scaled up for production during Chemistry, Manufacturing, and Controls (CMC) development and, ultimately, for clinical trials and commercialization. He explained, “It’s about identifying potential red flags early on—issues like aggregation, degradation, or manufacturing inefficiencies—that could derail a candidate further down the line.” Why Focus on Developability During Discovery? Traditionally, discovery efforts have focused on identifying antibodies with the highest efficacy and safety profiles. However, the increasing complexity of biologics, including bispecific antibodies and antibody-drug conjugates, has shifted industry focus. Dr. Wang emphasized the costly consequences of overlooking developability in the discovery phase. “Imagine investing millions into a molecule, only to discover insurmountable stability or manufacturability issues during development,” he said. “Performing these assessments early is like an insurance policy, mitigating risks and saving time and resources.” The Economic Case for Early Developability Assessments Dr. Wang highlighted the economic rationale for incorporating developability assessments during the initial discovery phase. “The cost of discovery is less than 1% of the total development cost. Spending a bit more upfront can save millions in reengineering or restarting development,” he noted. He also pointed out that superior developability attributes can provide a competitive edge, enabling faster clinical trial entry or product approval. Key Challenges and Industry Solutions Despite its benefits, the integration of developability assessments in discovery labs faces challenges. Labs often lack the tools, materials, and expertise required for systematic evaluations. “Developability attributes must be assessed using a robust combination of computational methods, analytical tools, and high-throughput assays, which many labs are not equipped to handle,” Dr. Wang explained. Companies like WuXi Biologics have stepped in to bridge this gap. “Our Discovery unit collaborates closely with our CMC team to identify and address developability issues early on,” said Dr. Wang. WuXi’s “WuXiDEEP™,” platform has become a cornerstone of their success, helping fix more than 50 problematic molecules and guiding hundreds of projects through the development pipeline. A Stepwise Approach to Developability Dr. Wang outlined a stepwise approach to developability assessments, starting with high-throughput evaluations during the initial screening of hundreds of candidates. “We use computational analysis to identify red flags such as post-translational modification hotspots or aggregation risks,” he explained. Promising candidates then undergo more detailed assessments, requiring larger material quantities and lower-throughput methods. Even when issues arise, solutions like protein engineering can salvage candidates with strong biological functions. “It’s not about discarding problem molecules outright but addressing and optimizing their developability profiles,” Dr. Wang emphasized. The Role of AI in Developability Assessments Artificial intelligence (AI) is playing an increasingly significant role in drug discovery, and Dr.
    続きを読む 一部表示
    1分未満
activate_buybox_copy_target_t1

Cell Culture Dish Podcastに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。