エピソード

  • The Future of Data Teams in the AI Era: Insights from Alex Welch, dbt Labs' Head of Data and Analytics
    2024/11/01

    In this insightful episode of Data Hurdles, hosts Chris Detzel and Michael Burke sit down with Alex Welch, Head of Data at dbt Labs, to explore the transformative impact of AI on data organizations and the future of analytics.

    With over a decade of experience in FinTech and now leading data initiatives at dbt Labs, Alex shares valuable perspectives on:

    • Data Quality & Governance:
    - The critical importance of establishing data quality frameworks
    - How to approach data governance without creating unnecessary friction
    - The balance between control and accessibility in data management

    • AI Implementation & Challenges:
    - Two major hurdles in AI adoption: data/tech debt and the skills/culture gap
    - Practical approaches to introducing AI into existing workflows
    - The importance of starting small rather than trying to "boil the ocean"

    • Future of Data Teams:
    - Emerging roles like prompt engineering specialists and AI ethics officers
    - The shift from hierarchical structures to dynamic pod-based teams
    - How human-AI collaboration will reshape organizational structures

    • Skills & Development:
    - Why traditional analytical skills remain crucial in the AI era
    - The importance of maintaining human judgment and expertise
    - How to prepare for an AI-augmented workplace

    The conversation takes an especially interesting turn when discussing practical applications of AI, including Alex's personal example of using AI for meal planning and grocery shopping automation. The hosts and guest also explore thought-provoking perspectives on maintaining human expertise while leveraging AI capabilities, emphasizing the importance of using AI to augment rather than replace human decision-making.

    The episode concludes with valuable insights about preparing organizations for emerging AI trends and the importance of considering security implications in an AI-enabled future.

    This episode is particularly relevant for:
    - Data leaders planning AI initiatives
    - Organizations navigating data quality challenges
    - Professionals interested in the future of data careers
    - Anyone looking to understand the practical implications of AI in business

    続きを読む 一部表示
    51 分
  • Data Mesh in Action: Challenges, Opportunities, and Real-World Examples with Willem Koenders
    2024/09/29

    In this comprehensive episode of Data Hurdles, hosts Chris Detzel and Michael Burke engage in a deep and insightful conversation with Willem Koenders, a global data strategy leader at ZS Associates, about the increasingly popular concept of data mesh.

    The episode begins with Willem providing his background and expertise in the data field, setting the stage for a rich discussion. He explains the core concept of data mesh, describing it as a domain-driven approach to data architecture that emphasizes decentralized ownership and governance of data across an organization.

    Throughout the conversation, Willem uses various analogies to make the concept more accessible, likening data mesh to a net with strategic data nodes, and comparing data assets to real estate properties that need proper management and care. These analogies help illustrate the shift from centralized data warehouses or lakes to a more distributed, domain-oriented approach.

    The hosts and guest delve into the challenges of implementing data mesh, including cultural shifts required within organizations. Willem emphasizes the importance of clear ownership, quality control, and the need for a product-oriented mindset when it comes to data assets. He discusses how data mesh can help solve long-standing issues of data quality and accessibility that many organizations face.

    Real-world examples and case studies are shared, providing listeners with practical insights into how data mesh principles are being applied across various industries. Willem talks about the financial sector's early adoption of similar concepts and how medical technology companies are now embracing data mesh to deal with evolving market demands and data-generating products.

    The conversation also covers the critical aspect of data governance in a mesh environment. Willem explains how governance needs to be balanced between centralized standards (especially for security) and domain-specific controls. He stresses the importance of enablement and providing the right tools for domain teams to manage their data effectively.

    Chris and Michael bring up the challenges of cross-functional collaboration and the often siloed nature of data work in organizations. Willem acknowledges these difficulties and discusses strategies for improving communication and alignment between different teams and roles.

    The episode explores how to measure the business impact of data mesh implementations. Willem advocates for a portfolio approach, where organizations track the value generated by specific data assets and their associated use cases, rather than focusing solely on technology investments.

    Looking to the future, the discussion touches on the potential for data mesh to become a dominant data architecture approach, especially for larger and more complex organizations. Willem expresses hope that evolving tools and technologies, including AI, will make data mesh implementation more accessible to a broader range of companies.

    Throughout the episode, the hosts and guest maintain a balanced view, acknowledging both the potential benefits and the significant challenges of adopting a data mesh approach. They emphasize that success depends not just on technology, but on organizational culture, trust, and effective communication.

    The conversation concludes with reflections on the importance of building trust between different parts of an organization and how frameworks like data mesh can facilitate better collaboration and data utilization when implemented thoughtfully.

    This episode provides listeners with a comprehensive overview of data mesh, blending theoretical concepts with practical insights and real-world examples. It offers valuable perspectives for data professionals, business leaders, and anyone interested in modern data architecture and management strategies.

    続きを読む 一部表示
    42 分
  • Revolutionizing Healthcare Data Sharing: Shubh Sinha, Integral's CEO, on Data Hurdles
    2024/08/10

    In this enlightening episode of "Data Hurdles," hosts Chris Detzel and Michael Burke engage in a deep conversation with Shubh Sinha, CEO and co-founder of Integral, about revolutionizing healthcare data sharing. Sinha, leveraging his experience at LiveRamp and his current leadership role at Integral, offers valuable insights into the intricate world of regulated data in healthcare. He elucidates how data fragmentation across various healthcare touchpoints creates significant challenges in comprehending a patient's complete journey. Sinha emphasizes the crucial balance between utilizing comprehensive patient data—encompassing both medical and non-medical information—and adhering strictly to evolving privacy regulations such as HIPAA, CCPA, and GDPR.

    The discussion explores Integral's innovative approach to these challenges, showcasing how their technology automates risk assessment and compliance checks for data sets, facilitating faster and more secure data sharing between healthcare entities. Sinha underscores the importance of proactive compliance in an increasingly regulated data landscape and how Integral's solutions are designed to swiftly adapt to new regulations. The conversation also addresses the impact of AI and large language models in the healthcare data space, highlighting new considerations such as bias in training data and the necessity for explainable AI in medical decision-making.

    As co-founder, Sinha provides a forward-looking perspective on the future of healthcare data, predicting a trend towards more regulated data across industries and positioning Integral as a vital link between compliance and data stacks. He envisions a future where data utility and privacy coexist harmoniously, fostering trust between healthcare providers and patients. The episode concludes with reflections on the growing importance of auditability and explainability in data-driven decisions, underscoring Integral's role in shaping a more transparent and efficient healthcare data ecosystem. This insightful discussion offers listeners a comprehensive understanding of the current challenges and innovative solutions in healthcare data sharing, highlighting how companies like Integral, under Sinha's co-leadership, are paving the way for more effective, compliant, and patient-centric healthcare data utilization.

    続きを読む 一部表示
    27 分
  • Challenging Data Management Norms: A Conversation with Malcolm Hawker, Chief Data Officer at Profisee
    2024/07/27

    In this insightful episode of Data Hurdles, hosts Chris Detzel and Michael Burke welcome Malcolm Hawker, Chief Data Officer at Profisee, for an in-depth discussion on the evolving landscape of data management and the role of Chief Data Officers (CDOs) in today's organizations.

    The conversation kicks off with Malcolm sharing his journey from product management to becoming a prominent figure in the data management space. He provides valuable insights into his experiences at Dun & Bradstreet and as a Gartner analyst, which have shaped his perspectives on data governance and strategy.

    A significant portion of the episode is dedicated to Malcolm's contrarian view on the data mesh architecture. He articulates why he favors the data fabric approach, challenging the underlying assumptions of data mesh and discussing the practical limitations of fully decentralized data management. This leads to a broader discussion on the importance of balancing domain autonomy with cross-functional data needs in organizations.

    The conversation then shifts to the impact of AI and machine learning on data governance. Malcolm shares his optimistic view on how AI could potentially solve complex data management challenges, particularly in automating governance processes and bridging the gap between structured and unstructured data.

    Throughout the episode, Malcolm emphasizes the need for CDOs to focus on delivering tangible value to their organizations. He criticizes the overreliance on data maturity assessments and lengthy frameworks, instead advocating for a more practical, customer-centric approach to data management. The discussion touches on the importance of quantifying the value of data initiatives and improving communication with business stakeholders.

    The hosts and Malcolm also explore emerging trends that CDOs should be aware of, including the integration of product management principles into data leadership roles, the growing importance of sustainability in data management, and the need to change the narrative around data quality from a burden to an opportunity.

    Towards the end, the conversation turns to the future of the CDO role. Malcolm expresses optimism about the long-term prospects for data leadership, while acknowledging short-term challenges. He highlights the emergence of a new generation of CDOs who are willing to question the status quo and take innovative approaches to data management.

    Throughout the episode, Malcolm's passion for data management and his commitment to driving change in the industry shine through. His candid insights and provocative ideas make for a compelling and thought-provoking discussion that challenges listeners to rethink traditional approaches to data leadership and governance.

    This Data Hurdles episode offers valuable insights for current and aspiring CDOs, data professionals, and business leaders interested in leveraging data as a strategic asset in their organizations.

    続きを読む 一部表示
    46 分
  • Stirring the Data Pot: DataKitchen's CEO, Founder, Head Chef, Christopher Bergh on Cooking Up Success
    2024/06/30

    This episode of Data Hurdles features an in-depth interview with Christopher Bergh, CEO and Head Chef of Data Kitchen. Hosts Chris Detzel and Michael Burke engage in a wide-ranging discussion about the challenges and opportunities in data analytics and engineering.

    Key Topics Covered:

    1. Introduction and Background
      • Chris Bergh introduces Data Kitchen and explains the company name's origin and significance.
      • He shares his background in software development and transition to data analytics.
    2. Core Challenges in Data Analytics
      • Berg emphasizes that 70-80% of data team work is waste.
      • He stresses the importance of focusing on eliminating waste rather than optimizing the productive 20-30%.
    3. Data Kitchen's Approach
      • The company aims to bring ideas from agile, DevOps, and lean manufacturing to data and analytics teams.
      • They focus on helping teams deliver insights to demanding customers consistently and innovatively.
    4. Key Problems in Data Teams
      • Difficulty in making quick changes and assessing their impact
      • Challenges in measuring team productivity and customer satisfaction
      • The need for better error detection and resolution in production
    5. Data Team Productivity and Happiness
      • Discussion on the high frustration levels among data professionals
      • The importance of connecting data teams with end customers for better feedback and satisfaction
    6. Data Quality and Testing
      • Bergh introduces Data Kitchen's approach to automatically generating data quality validation tests
      • The importance of business context in creating effective tests
    7. Data Journey Concept
      • Bergh explains the "data journey" as a fire alarm control panel for data processes
      • The importance of having a live, actionable view of the entire data production process
    8. Observability in Data Systems
      • Discussion on the future of observability in increasingly complex data systems
      • The need for cross-tool and deep-dive monitoring capabilities
    9. Impact of AI and LLMs
      • Bergh's perspective on the role of AI and Large Language Models in data work
      • Emphasis that while AI can improve efficiency, it doesn't solve the fundamental waste problem
    10. Open Source and Community
      • Data Kitchen's decision to open-source their software
      • The importance of spreading ideas and fostering community in the data space
    11. Certification and Education
      • Data Kitchen's certification program and its popularity among data professionals

    Key Takeaways:

    • The most significant challenge in data analytics is addressing the 70-80% of work that is waste.
    • Connecting data teams directly with customers can significantly improve outcomes and job satisfaction.
    • Automatically generated data quality tests and visualizing the entire data production process are crucial innovations.
    • While AI and new tools can improve efficiency, they don't address the core issues of waste and system-level problems in data work.
    • Open-sourcing and community building are essential for advancing the field of data analytics and engineering.
    続きを読む 一部表示
    42 分
  • Transforming CX with AI: A Conversation with CEO and Co-Founder, Somya Kapoor of TheLoops
    2024/06/08

    Welcome to another episode of the Data Hurdles podcast! In this episode, hosts Chris Detzel and Michael Burke are thrilled to have a special guest, Somya Kapoor, the CEO and Co-Founder of TheLoops. Somya brings a wealth of experience from her leadership roles at SAP and ServiceNow and shares her remarkable journey of transitioning from big corporations to the startup world.


    Episode Highlights:

    • Introduction and Background: Chris and Michael kick off the episode with a warm welcome and a brief catch-up before introducing Somya Kapoor. Somya shares her impressive background, highlighting her leadership roles at SAP and ServiceNow and her transition to the startup ecosystem.
    • Founding TheLoops: Somya dives into the inspiration behind co-founding TheLoops, a company focused on transforming customer experience (CX) using AI. She recounts the challenges and opportunities she encountered while starting the company during the COVID-19 pandemic. Despite the initial setbacks, Somya's perseverance and innovative thinking led to the successful establishment of TheLoops.
    • AI and Customer Experience: The discussion delves into how TheLoops leverages AI to enhance customer experience by aligning people, processes, and data. Somya explains the critical role of AI in operational efficiency and personalized customer interactions. She emphasizes the importance of understanding customer behavior through data and how it can drive better business outcomes.
    • Navigating Challenges: Somya shares insights on navigating the hurdles of building a startup, especially during uncertain times. She discusses the importance of pivoting and adapting to changing circumstances, and how TheLoops managed to secure customers and investors despite the pandemic-induced challenges.
    • Leadership and Diversity: The conversation shifts to leadership and the significance of fostering an inclusive and diverse work culture. Somya shares her personal journey of growing up in different cultural environments and how it shaped her perspective on diversity. She highlights the benefits of having a diverse team and how it contributes to creativity and innovation at TheLoops.
    • Future Trends in CX: Somya provides her perspective on the current trends and future of the CX industry. She discusses the transformative impact of AI on CX, the breaking down of silos within organizations, and the evolving role of support leaders. Somya also touches upon the integration of AI in support systems to enhance customer satisfaction and operational efficiency.
    • Advice for Aspiring Entrepreneurs: Towards the end of the episode, Somya offers valuable advice for aspiring entrepreneurs, especially women looking to enter the tech industry. She encourages them to take the leap, embrace challenges, and learn to navigate the startup landscape with resilience and determination.
    • Closing Thoughts: Chris and Michael wrap up the episode with a heartfelt thank you to Somya for sharing her insights and experiences. They express their admiration for her journey and the innovative work being done at TheLoops. The hosts also remind listeners to rate, review, and subscribe to the podcast for more inspiring episodes.

    Follow Us:

    • Twitter: @DataHurdles
    • LinkedIn: Data Hurdles
    • Website: Data Hurdles
    続きを読む 一部表示
    42 分
  • AI Everywhere: The Coming Era of Intelligent Devices and Embedded Systems
    2024/05/18

    In this episode of Data Hurdles, hosts Chris Detzel and Michael Burke engage in a wide-ranging discussion about the current state and future trajectory of artificial intelligence (AI) and machine learning (ML) in both the job market and product development.

    The conversation begins with Mike sharing insights on the changing job market for AI and ML professionals. Despite the high demand for these skills in recent years, he notes that the market seems to be softening, with even experienced candidates facing challenges finding jobs. They discuss potential factors, including an oversupply of talent, ambiguity around the impact of large language models like ChatGPT, and broader economic conditions.

    The hosts then delve into the different challenges and opportunities facing AI startups compared to established companies looking to integrate AI into their products. Mike suggests that startups are at risk of being overtaken by the rapid advancements in foundational models like GPT-4, while larger companies have some buffer due to their existing customer base and revenue streams. However, he notes that even large organizations will need to eventually move beyond lightweight AI integrations and rebuild their products around AI foundations to stay competitive.

    Throughout the discussion, Chris and Mike touch on various examples of AI applications, from AI companions like Character.AI to productivity tools like Gemini's integration with Google Workspace. They also explore the importance of data privacy and security when using AI tools, highlighting how certain industries and use cases require on-premise models rather than cloud-based platforms.

    Looking ahead, the hosts imagine a future where AI is embedded in every device and system, from home appliances to cars. While noting the current "gimmicky phase" of many AI features, they express excitement about the potential for these technologies to eventually solve deeper, more meaningful problems.

    The episode offers a nuanced exploration of the challenges and opportunities surrounding AI and ML, informed by the hosts' industry experience and observations. While covering a broad range of topics, the central theme is the need for individuals and organizations to strategically navigate the rapid advancements in these technologies.

    続きを読む 一部表示
    24 分
  • Pragmatic Approaches to Smart Data and AI Adoption with Founder of North Labs, Collin Graves
    2024/04/07

    In this episode of the Data Hurdles podcast, hosts Chris Detzel and Michael Burke interview Collin Graves, CEO and founder of North Labs, an AWS data and analytics partner based in Scottsdale, Arizona.

    Collin shares his background, starting with his military service and early exposure to cloud computing through Amazon Web Services (AWS) in 2007. He then discusses the founding of North Labs and its focus on helping industrial organizations, such as those in CPG, retail, and oil and gas, set data and AI strategies to drive business value.

    The conversation delves into North Labs' approach to smart data and AI adoption, emphasizing pragmatism and building strong foundations. Collin explains how North Labs differentiates itself by being an AWS-first company while still supporting tools like Snowflake when appropriate.

    Collin also shares his leadership philosophy, drawing from his military experience. He stresses the importance of struggling together, delegating effectively, and being gentle but firm. The discussion touches on maintaining customer service and excellence as a small company by being selective about projects and adhering to standard operating procedures.

    Looking to the future, Collin envisions North Labs as a leading non-GSI (Global System Integrator) partner for AWS customers in the data and AI space. The company aims to help organizations adopt technologies like GenAI in a measured, ROI-driven manner.

    Throughout the episode, Collin provides insights into navigating the evolving cloud landscape, the challenges faced by organizations of different sizes, and the importance of clear communication and strategic partnerships in driving successful data and AI initiatives.

    続きを読む 一部表示
    33 分