• Prompt engineering in guiding large language models (LLMs)

  • 2024/10/26
  • 再生時間: 17 分
  • ポッドキャスト

Prompt engineering in guiding large language models (LLMs)

  • サマリー

  • explains the role of prompt engineering in guiding large language models (LLMs) to solve problems and perform tasks. The document focuses on three prompting techniques: Chain of Thought (CoT), Tree of Thought (ToT), and Self-Reflection, describing how each technique allows LLMs to reason through problems, consider multiple solutions, and analyze their own reasoning process. It then explores the use of prompt engineering in various applications such as multi-modal models, dynamic prompting, and autonomous decision-making. The document concludes with a discussion on the future of prompt engineering, including few-shot learning prompts, interactive prompting, and explainable prompt design.

    続きを読む 一部表示

あらすじ・解説

explains the role of prompt engineering in guiding large language models (LLMs) to solve problems and perform tasks. The document focuses on three prompting techniques: Chain of Thought (CoT), Tree of Thought (ToT), and Self-Reflection, describing how each technique allows LLMs to reason through problems, consider multiple solutions, and analyze their own reasoning process. It then explores the use of prompt engineering in various applications such as multi-modal models, dynamic prompting, and autonomous decision-making. The document concludes with a discussion on the future of prompt engineering, including few-shot learning prompts, interactive prompting, and explainable prompt design.

Prompt engineering in guiding large language models (LLMs)に寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。