-
サマリー
あらすじ・解説
The Reason for Antiparticles.The Field Guide to Particle Physics : Season 3. Episode 8.https://pasayten.org/the-field-guide-to-particle-physics©2022 The Pasayten Institute cc by-sa-4.0The eBookThe Field Guide to Particle Physics eBook is now available! If you're looking to support the show, we've got some fun options for you here, or you could buy us a coffee!ReferencesThe definitive resource for all data in particle physics is the Particle Data Group: https://pdg.lbl.gov. This episode also pays tribute to Richard Feynman’s 1986 Memorial Dirac Lecture.Terrell-Penrose rotation can be viewed from a human perspective in at "A Slower Speed of Light" by MIT's GameLab. That demo also includes the relativistic doppler effect. Some other great videos by Ute Kraus and Corvin Zahn at spacetimetravel.org. See in particular their dice demo.The Reason for Antiparticles.Antimatter is uncommon, but it’s not exactly rare. Antiparticles - especially those generated by cosmic radiation - are all around us, all the time. But just what is it doing here?Antimatter is just like MatterIn a lot of ways, antimatter behaves just like matter does. Quarks make up protons? Antiquarks make up antiprotons… and antineutrons, too!Antiprotons and antielectrons - that is, positrons - combine to form antihydrogen atoms.The Antihydrogen Laser PHysics Apparatus - the ALPHA Experiment at CERN - studies the spectroscopic properties of antihydrogen. That is, it uses photons to give a little extra energy boost to those positrons. As those positrons relax to their ground state, they emit distinct wavelengths of light.Just like regular hydrogen atoms.Photons, you see, are their own antiparticles. They interact with matter and antimatter in precisely the same way.If there were any difference between hydrogen and antihydrogen - any difference in mass, spin or the magnitude of their electric charge - those wavelengths of emitted light would also be different. And the ALPHA experiment would be able to detect those differences.But no such differences have been observed.So again, what exactly is antimatter doing here in our physical reality?Antimatter annihilates MatterThe one thing antimatter does *not* do is hang around.Antimatter annihilates with ordinary matter. Electrons and positrons annihilate to form a pair of gamma rays, a pair of photons.If the universe were balanced between matter and antimatter, we wouldn’t be here. Or… perhaps worse… we’d rapidly disintegrate into a bursts of gamma radiation as our particles and those antiparticle partners annihilated.So if antimatter is so uncommon - why is it even here? What is the point, the reason for antimatter? Why does the universe need antimatter?To understand that, we need to talk about time travel.The Light ConeOur reality has four dimensions. Three space and one time. Famously, Einstein’s special theory of relativity tell us that these four dimensions are related.That relationship is nature’s conspiracy to make sure that nothing travels faster than the speed of light.One way to think about how this works is time travel. Literally traveling through time. When we are still, we are traveling forward, through time. When we spring up to go for a run, we’re still traveling through time, but we *rotate* our perceived motion through time into space. This is a four-dimensional sort of rotation. Sometimes this is called a Terrell rotation. There are some stunning visualizations of Terrell rotation linked in the show notes.The amount of Terrell rotation varies without speed. In a sense, we exchange some of our speed in the time direction to travel through space. The faster we go through space, the slower we go through time. There is a limit to this kind of rotation. We cannot rotate our motion so deep into space that we travel backwards in time. The most we can do is cause time to stand almost still, which happens when we travel just shy of the speed of light.Light of course always and only travels at the speed of light, in the absence of matter anyway. And because everything that must travel slower than light - everything that has mass - like protons, electrons, atoms and US - is subject to the ultimate cosmic constraint: the light cone.To visualize this four-dimensional cone, think of a camera flash. It’s a sphere of light moving outwards from a point. The tip of the cone is us snapping the photo, and the vertical part of the cone corresponds to the dimension of time.At any moment, our reality can be cut into two regions: inside or outside the light cone. All those points that light can touch - and those that it can’t. Inside the light cone represents everything we can possibly hope to effect later in time. Outside the light cone is outside of our agency to do so.The light cone - in other words - represents the boundary of causality.Because we cannot travel faster than the speed of light, any Terrell rotation we experience inside our light cone retains a positive flow of ...