『The curious case of exponentiation in simply typed lambda calculus』のカバーアート

The curious case of exponentiation in simply typed lambda calculus

The curious case of exponentiation in simply typed lambda calculus

無料で聴く

ポッドキャストの詳細を見る

このコンテンツについて

Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating consequence that we cannot define self-exponentiation, \ x . exp x x. That term would reduce to \ x . x x, which is provably not typable in STLC.

The curious case of exponentiation in simply typed lambda calculusに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。