『ThursdAI - The top AI news from the past week』のカバーアート

ThursdAI - The top AI news from the past week

ThursdAI - The top AI news from the past week

著者: From Weights & Biases Join AI Evangelist Alex Volkov and a panel of experts to cover everything important that happened in the world of AI from the past week
無料で聴く

概要

Every ThursdAI, Alex Volkov hosts a panel of experts, ai engineers, data scientists and prompt spellcasters on twitter spaces, as we discuss everything major and important that happened in the world of AI for the past week. Topics include LLMs, Open source, New capabilities, OpenAI, competitors in AI space, new LLM models, AI art and diffusion aspects and much more.

sub.thursdai.newsAlex Volkov
政治・政府
エピソード
  • 📆 ThursdAI - Jan 22 - Clawdbot deep dive, GLM 4.7 Flash, Anthropic constitution + 3 new TSS models
    2026/01/23
    Hey! Alex here, with another weekly AI update! It seems like ThursdAI is taking a new direction, as this is our 3rd show this year, and a 3rd deep dive into topics (previously Ralph, Agent Skills), please let me know if the comments if you like this format. This week’s deep dive is into Clawdbot, a personal AI assistant you install on your computer, but can control through your phone, has access to your files, is able to write code, help organize your life, but most importantly, it can self improve. Seeing Wolfred (my Clawdbot) learn to transcribe incoming voice messages blew my mind, and I wanted to share this one with you at length! We had Dan Peguine on the show for the deep dive + both Wolfram and Yam are avid users! This one is not to be missed. If ThursdAI is usually too technical for you, use Claude, and install Clawdbot after you read/listen to the deep dive!Also this week, we read Claude’s Constitution that Anthropic released, heard a bunch of new TTS models (some are open source and very impressive) and talked about the new lightspeed coding model GLM 4.7 Flash. First the news, then deep dive, lets go 👇ThursdAI - Recaps of the most high signal AI weekly spaces is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Open Source AIZ.ai’s GLM‑4.7‑Flash is the Local Agent Sweet Spot (X, HF)This was the open‑source release that mattered this week. Z.ai (formerly Zhipu) shipped GLM‑4.7‑Flash, a 30B MoE model with only 3B active parameters per token, which makes it much more efficient for local agent work. We’re talking a model you can run on consumer hardware that still hits 59% on SWE‑bench Verified, which is uncomfortably close to frontier coding performance. In real terms, it starts to feel like “Sonnet‑level agentic ability, but local.” I know I know, we keep saying “sonnet at home” at different open source models, but this one slaps! Nisten was getting around 120 tokens/sec on an M3 Ultra Mac Studio using MLX, and that’s kind of the headline. The model is fast and capable enough that local agent loops like RALPH suddenly feel practical. It also performs well on browser‑style agent tasks, which is exactly what you want for local automation without sending all your data to a cloud provider. Liquid AI’s LFM2.5‑1.2B Thinking is the “Tiny but Capable” Class (X, HF)Liquid AI released a 1.2B reasoning model that runs under 900MB of memory while still manages to be useful. This thing is built for edge devices and old phones, and the speed numbers are backing it up. We’re talking 239 tok/s decode on AMD CPU, 82 tok/s on mobile NPU, and prefill speeds that make long prompts actually usable. Nisten made a great point: on iOS, there’s a per‑process memory limit around 3.8GB, so a 1.2B model lets you spend your budget on context instead of weights.This is the third class of models we’re now living with: not Claude‑scale, not “local workstation,” but “tiny agent in your pocket.” It’s not going to win big benchmarks, but it’s perfect for on‑device workflows, lightweight assistants, and local RAG.Voice & Audio: Text To Speech is hot this week with 3 releases! We tested three major voice releases this week, and I’m not exaggerating when I say the latency wars are now fully on. Qwen3‑TTS: Open Source, 97ms Latency, Voice Cloning (X, HF)Just 30 minutes before the show, Qwen released their first model of the year, Qwen3 TTS, with two models (0.6B and 1.7B). With support for Voice Cloning based on just 3 seconds of voice, and claims of 97MS latency, this apache 2.0 release looked very good on the surface!The demos we did on stage though... were lackluster. TTS models like Kokoro previously impressed us with super tiny sizes and decent voice, while Qwen3 didn’t really perform on the cloning aspect. For some reason (I tested in Russian which they claim to support) the cloned voice kept repeating the provided sample voice instead of just generating the text I gave it. This confused me, and I’m hoping this is just a demo issue, not a problem with the model. They also support voice design where you just type in the type of voice you want, which to be fair, worked fairly well in our tests!With Apache 2.0 and a full finetuning capability, this is a great release for sure, kudos to the Qwen team! Looking forward to see what folks do with this properly. FlashLabs Chroma 1.0: Real-Time Speech-to-Speech, Open Source (X, HF) Another big open source release in the audio category this week was Chroma 1.0 from FlashLabs, which claim to be the first speech2speech model (not a model that has the traditional ASR>LLM>TTS pipeline) and the claim 150ms end to end latency! The issue with this one is, the company released an open source 4B model, and claimed that this model powers their chat interface demo on the web, but in the release notes they claim the model is english speaking only, while on...
    続きを読む 一部表示
    1 時間 38 分
  • 📆 ThursdAI - Jan 15 - Agent Skills Deep Dive, GPT 5.2 Codex Builds a Browser, Claude Cowork for the Masses, and the Era of Personalized AI!
    2026/01/16
    Hey ya’ll, Alex here, and this week I was especially giddy to record the show! Mostly because when a thing clicks for me that hasn’t clicked before, I can’t wait to tell you all about it! This week, that thing is Agent Skills! The currently best way to customize your AI agents with domain expertise, in a simple, repeatable way that doesn’t blow up the context window! We mentioned skills when Anthropic first released them (Oct 16) and when they became an open standard but it didn’t really click until last week! So more on that below. Also this week, Anthropic released a research preview of Claude Cowork, an agentic tool for non coders, OpenAI finally let loos GPT 5.2 Codex (in the API, it was previously available only via Codex), Apple announced a deal with Gemini to power Siri, OpenAI and Anthropic both doubled down on healthcare and much more! We had an incredible show, with an expert in Agent Skills, Eleanor Berger and the usual gang on co-hosts, strongly recommend watching the show in addition to the newsletter! Also, I vibe coded skills support for all LLMs to Chorus, and promised folks a link to download it, so look for that in the footer, let’s dive in! ThursdAI is where you stay up to date! Subscribe to keep us going! Big Company LLMs + APIs: Cowork, Codex, and a Browser in a WeekAnthropic launches Claude Cowork: Agentic AI for Non‑Coders (research preview)Anthropic announced Claude Cowork, which is basically Claude Code wrapped in a friendly UI for people who don’t want to touch a terminal. It’s a research preview available on the Max tier, and it gives Claude read/write access to a folder on your Mac so it can do real work without you caring about diffs, git, or command line.The wild bit is that Cowork was built in a week and a half, and according to the Anthropic team it was 100% written using Claude Code. This feels like a “we’ve crossed a threshold” moment. If you’re wondering why this matters, it’s because coding agents are general agents. If a model can write code to do tasks, it can do taxes, clean your desktop, or orchestrate workflows, and that means non‑developers can now access the same leverage developers have been enjoying for a year.It also isn’t just for files—it comes with a Chrome connector, meaning it can navigate the web to gather info, download receipts, or do research and it uses skills (more on those later)Earlier this week I recorded this first reactions video about Cowork and I’ve been testing it ever since, it’s a very interesting approach of coding agents that “hide the coding” to just... do things. Will this become as big as Claude Code for anthropic (which is reportedly a 1B business for them)? Let’s see! There are real security concerns here, especially if you’re not in the habit of backing up or using git. Cowork sandboxes a folder, but it can still delete things in that folder, so don’t let it loose on your whole drive unless you like chaos.GPT‑5.2 Codex: Long‑Running Agents Are HereOpenAI shipped GPT‑5.2 Codex into the API finally! After being announced as the answer for Opus 4.5 and only being available in Codex. The big headline is SOTA on SWE-Bench and long‑running agentic capability. People describe it as methodical. It takes longer, but it’s reliable on extended tasks, especially when you let it run without micromanaging.This model is now integrated into Cursor, GitHub Copilot, VS Code, Factory, and Vercel AI Gateway within hours of launch. It’s also state‑of‑the‑art on SWE‑Bench Pro and Terminal‑Bench 2.0, and it has native context compaction. That last part matters because if you’ve ever run an agent for long sessions, the context gets bloated and the model gets dumber. Compaction is an attempt to keep it coherent by summarizing old context into fresh threads, and we debated whether it really works. I think it helps, but I also agree that the best strategy is still to run smaller, atomic tasks with clean context.Cursor vibe-coded browser with GPT-5.2 and 3M lines of codeThe most mind‑blowing thing we discussed is Cursor letting GPT‑5.2 Codex run for a full week to build a browser called FastRenderer. This is not Chromium‑based. It’s a custom HTML parser, CSS cascade, layout engine, text shaping, paint pipeline, and even a JavaScript VM, written in Rust, from scratch. The codebase is open source on GitHub, and the full story is on Cursor’s blog It took nearly 30,000 commits and millions of lines of code. The system ran hundreds of concurrent agents with a planner‑worker architecture, and GPT‑5.2 was the best model for staying on task in that long‑running regime. That’s the real story, not just “lol a model wrote a browser.” This is a stress test for long‑horizon agentic software development, and it’s a preview of how teams will ship in 2026.I said on the show, browsers are REALLY hard, it took two decades for the industry to settle and be able to render ...
    続きを読む 一部表示
    1 時間 41 分
  • ThursdAI - Jan 8 - Vera Rubin's 5x Jump, Ralph Wiggum Goes Viral, GPT Health Launches & XAI Raises $20B Mid-Controversy
    2026/01/08
    Hey folks, Alex here from Weights & Biases, with your weekly AI update (and a first live show of this year!) For the first time, we had a co-host of the show also be a guest on the show, Ryan Carson (from Amp) went supernova viral this week with an X article (1.5M views) about Ralph Wiggum (yeah, from Simpsons) and he broke down that agentic coding technique at the end of the show. LDJ and Nisten helped cover NVIDIA’s incredible announcements during CES with their Vera Rubin upcoming platform (4-5X improvements) and we all got excited about AI medicine with ChatGPT going into Health officially! Plus, a bunch of Open Source news, let’s get into this: ThursdAI - Recaps of the most high signal AI weekly spaces is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Open Source: The “Small” Models Are WinningWe often talk about the massive frontier models, but this week, Open Source came largely from unexpected places and focused on efficiency, agents, and specific domains.Solar Open 100B: A Data MasterclassUpstage released Solar Open 100B, and it’s a beast. It’s a 102B parameter Mixture-of-Experts (MoE) model, but thanks to MoE magic, it only uses about 12B active parameters during inference. This means it punches incredibly high but runs fast.What I really appreciated here wasn’t just the weights, but the transparency. They released a technical report detailing their “Data Factory” approach. They trained on nearly 20 trillion tokens, with a huge chunk being synthetic. They also used a dynamic curriculum that adjusted the difficulty and the ratio of synthetic data as training progressed. This transparency is what pushes the whole open source community forward.Technically, it hits 88.2 on MMLU and competes with top-tier models, especially in Korean language tasks. You can grab it on Hugging Face.MiroThinker 1.5: The DeepSeek Moment for Agents?We also saw MiroThinker 1.5, a 30B parameter model that is challenging the notion that you need massive scale to be smart. It uses something they call “Interactive Scaling.”Wolfram broke this down for us: this agent forms hypotheses, searches for evidence, and then iteratively revises its answers in a time-sensitive sandbox. It effectively “thinks” before answering. The result? It beats trillion-parameter models on search benchmarks like BrowseComp. It’s significantly cheaper to run, too. This feels like the year where smaller models + clever harnesses (harnesses are the software wrapping the model) will outperform raw scale.Liquid AI LFM 2.5: Running on Toasters (Almost)We love Liquid AI and they are great friends of the show. They announced LFM 2.5 at CES with AMD, and these are tiny ~1B parameter models designed to run on-device. We’re talking about running capable AI on your laptop, your phone, or edge devices (or the Reachy Mini bot that I showed off during the show! I gotta try and run LFM on him!)Probably the coolest part is the audio model. Usually, talking to an AI involves a pipeline: Speech-to-Text (ASR) -> LLM -> Text-to-Speech (TTS). Liquid’s model is end-to-end. It hears audio and speaks audio directly. We watched a demo from Maxime Labonne where the model was doing real-time interaction, interleaving text and audio. It’s incredibly fast and efficient. While it might not write a symphony for you, for on-device tasks like summarization or quick interactions, this is the future.NousCoder-14B and Zhipu AI IPOA quick shoutout to our friends at Nous Research who released NousCoder-14B, an open-source competitive programming model that achieved a 7% jump on LiveCodeBench accuracy in just four days of RL training on 48 NVIDIA B200 GPUs. The model was trained on 24,000 verifiable problems, and the lead researcher Joe Li noted it achieved in 4 days what took him 2 years as a teenager competing in programming contests. The full RL stack is open-sourced on GitHub and Nous published a great WandB results page as well! And in historic news, Zhipu AI (Z.ai)—the folks behind the GLM series—became the world’s first major LLM company to IPO, raising $558 million on the Hong Kong Stock Exchange. Their GLM-4.7 currently ranks #1 among open-source and domestic models on both Artificial Analysis and LM Arena. Congrats to them!Big Companies & APIsNVIDIA CES: Vera Rubin Changes EverythingLDJ brought the heat on this one covering Jensen’s CES keynote that unveiled the Vera Rubin platform, and the numbers are almost hard to believe. We’re talking about a complete redesign of six chips: the Rubin GPU delivering 50 petaFLOPS of AI inference (5x Blackwell), the Vera CPU with 88 custom Olympus ARM cores, NVLink 6, ConnectX-9 SuperNIC, BlueField-4 DPU, and Spectrum-6 Ethernet.Let me put this in perspective using LDJ’s breakdown: if you look at FP8 performance, the jump from Hopper to Blackwell was about 5x. The jump from Blackwell to Vera Rubin is over 3x again—but here’...
    続きを読む 一部表示
    1 時間 47 分
まだレビューはありません