Vanishing Gradients

著者: Hugo Bowne-Anderson
  • サマリー

  • A podcast about all things data, brought to you by data scientist Hugo Bowne-Anderson. It's time for more critical conversations about the challenges in our industry in order to build better compasses for the solution space! To this end, this podcast will consist of long-format conversations between Hugo and other people who work broadly in the data science, machine learning, and AI spaces. We'll dive deep into all the moving parts of the data world, so if you're new to the space, you'll have an opportunity to learn from the experts. And if you've been around for a while, you'll find out what's happening in many other parts of the data world.
    © 2024 Hugo Bowne-Anderson
    続きを読む 一部表示

あらすじ・解説

A podcast about all things data, brought to you by data scientist Hugo Bowne-Anderson. It's time for more critical conversations about the challenges in our industry in order to build better compasses for the solution space! To this end, this podcast will consist of long-format conversations between Hugo and other people who work broadly in the data science, machine learning, and AI spaces. We'll dive deep into all the moving parts of the data world, so if you're new to the space, you'll have an opportunity to learn from the experts. And if you've been around for a while, you'll find out what's happening in many other parts of the data world.
© 2024 Hugo Bowne-Anderson
エピソード
  • Episode 42: Learning, Teaching, and Building in the Age of AI
    2025/01/04
    In this episode of Vanishing Gradients, the tables turn as Hugo sits down with Alex Andorra, host of Learning Bayesian Statistics. Hugo shares his journey from mathematics to AI, reflecting on how Bayesian inference shapes his approach to data science, teaching, and building AI-powered applications. They dive into the realities of deploying LLM applications, overcoming “proof-of-concept purgatory,” and why first principles and iteration are critical for success in AI. Whether you’re an educator, software engineer, or data scientist, this episode offers valuable insights into the intersection of AI, product development, and real-world deployment. LINKS The podcast on YouTube (https://www.youtube.com/watch?v=BRIYytbqtP0) The original podcast episode (https://learnbayesstats.com/episode/122-learning-and-teaching-in-the-age-of-ai-hugo-bowne-anderson) Alex Andorra on LinkedIn (https://www.linkedin.com/in/alex-andorra/) Hugo on LinkedIn (https://www.linkedin.com/in/hugo-bowne-anderson-045939a5/) Hugo on twitter (https://x.com/hugobowne) Vanishing Gradients on twitter (https://x.com/vanishingdata) Hugo's "Building LLM Applications for Data Scientists and Software Engineers" course (https://maven.com/s/course/d56067f338)
    続きを読む 一部表示
    1 時間 20 分
  • Episode 1: Introducing Vanishing Gradients
    2022/02/16
    In this brief introduction, Hugo introduces the rationale behind launching a new data science podcast and gets excited about his upcoming guests: Jeremy Howard, Rachael Tatman, and Heather Nolis! Original music, bleeps, and blops by local Sydney legend PlaneFace (https://planeface.bandcamp.com/album/fishing-from-an-asteroid)!
    続きを読む 一部表示
    5 分
  • Episode 41: Beyond Prompt Engineering: Can AI Learn to Set Its Own Goals?
    2024/12/30
    Hugo Bowne-Anderson hosts a panel discussion from the MLOps World and Generative AI Summit in Austin, exploring the long-term growth of AI by distinguishing real problem-solving from trend-based solutions. If you're navigating the evolving landscape of generative AI, productionizing models, or questioning the hype, this episode dives into the tough questions shaping the field. The panel features: - Ben Taylor (Jepson) (https://www.linkedin.com/in/jepsontaylor/) – CEO and Founder at VEOX Inc., with experience in AI exploration, genetic programming, and deep learning. - Joe Reis (https://www.linkedin.com/in/josephreis/) – Co-founder of Ternary Data and author of Fundamentals of Data Engineering. - Juan Sequeda (https://www.linkedin.com/in/juansequeda/) – Principal Scientist and Head of AI Lab at Data.World, known for his expertise in knowledge graphs and the semantic web. The discussion unpacks essential topics such as: - The shift from prompt engineering to goal engineering—letting AI iterate toward well-defined objectives. - Whether generative AI is having an electricity moment or more of a blockchain trajectory. - The combinatorial power of AI to explore new solutions, drawing parallels to AlphaZero redefining strategy games. - The POC-to-production gap and why AI projects stall. - Failure modes, hallucinations, and governance risks—and how to mitigate them. - The disconnect between executive optimism and employee workload. Hugo also mentions his upcoming workshop on escaping Proof-of-Concept Purgatory, which has evolved into a Maven course "Building LLM Applications for Data Scientists and Software Engineers" launching in January (https://maven.com/hugo-stefan/building-llm-apps-ds-and-swe-from-first-principles?utm_campaign=8123d0&utm_medium=partner&utm_source=instructor). Vanishing Gradient listeners can get 25% off the course (use the code VG25), with $1,000 in Modal compute credits included. A huge thanks to Dave Scharbach and the Toronto Machine Learning Society for organizing the conference and to the audience for their thoughtful questions. As we head into the new year, this conversation offers a reality check amidst the growing AI agent hype. LINKS Hugo on twitter (https://x.com/hugobowne) Hugo on LinkedIn (https://www.linkedin.com/in/hugo-bowne-anderson-045939a5/) Vanishing Gradients on twitter (https://x.com/vanishingdata) "Building LLM Applications for Data Scientists and Software Engineers" course (https://maven.com/hugo-stefan/building-llm-apps-ds-and-swe-from-first-principles?utm_campaign=8123d0&utm_medium=partner&utm_source=instructor).
    続きを読む 一部表示
    44 分

Vanishing Gradientsに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。